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1 Foreward

This report covers the period August 15, 1995 to December 31, 1996. This was the duration
of grant DAAHO04-95-1-0527. During this time, extensive theoretical studies of hot electron and
quantum magnetotransport in quantum wires was undertaken under the author’s supervision. One
graduate student was supported for part his program at the University of Notre Dame. He received
a Ph.D. degree in Electrical Engineering in December 1996 and is currently a post-doctoral research
associate at the University of Nebraska. He will be joining the Department of Electrical Engineering
at the University of California-Los Angeles as a research associate starting August 1, 1997.

This research resulted in five journal/book publications and six conference publications which
are attached in the appendix.

A Table of Contents is not included since the main body of the report is less than 10 pages.




2 Technical Report

2.1 Statement of problem

Two distint problems were studied: (a) hot electron magneto-transport, and (b) quantum magneto-
optical properties of quantum wires. In the first case, we started with the Schrédinger equation
in a quantum wire subjected to a magnetic field. This equation was solved numerically using a
finite difference scheme developed by us [1] to yield the electron wave functions, energy-dispersion
relations and the density of states. From these, electron-phonon and electron-impurity scattering
rates were calculated using Fermi’s Golden Rule [2-8]. These were then used in a Monte Carlo
simulator to find electron velocity versus field characteristics, electron energy and other transport
parameters [6,7].

To study magneto-optical properties, we solved the Schrodinger equation for an exciton in a
quantum wire subjected to a magnetic field. This was based on a variational approach [9-28]. The
solutions yield exciton binding energies and other parameters, which are then used to calculate
bi-exciton parameters [10,12,14]. Third-order dielectric susceptibility x® was calculated using the
rotating wave approximation. This third-order non-linearity arises from exciton-exciton interaction
and population saturation of the excitonic state {11,16-18]. Furthermore, second-order susceptibility
x® was also calculated. It arises from inter-subband transitions and giant dipoles associated with
them [13,19,22,23,27]. Finally, exciton-polariton transport in an array of quantum wires has also
been investigated [20,28].

2.2 Summary of most important results

The following findings were the most remarkable:

1. It was found that a magnetic field quenches intra-subband electron-bulk acoustic phonon
scattering rates in a quantum wire by several orders of magnitude. This has important
implications for the celebrated integral Quantum Hall effect and may partially explain its
robustness. The quenching occurs because the dominant scattering mechanism is backscat-
tering which involves transitions between oppositely travelling states. In the presence of a
magnetic field, these states are localized along opposite edges of the wire (“edge states”) with
very little overlap between their wave functions. As a result, the matrix element for transition
between these states is drastically reduced.

2. A magnetic field increases electron-surface optical phonon scattering since the field skews
the wave functions of electrons towards the surfaces (or edges) of the quantum wire thus
increasing the overlap between the surface phonon modes and the electron wave function.

3. A magnetic field has two different effects on electron-confined polar optical phonon scattering.
On the one hand, it reduces the overlap between an electron wave function and a phonon
mode with the same index because of the skewing of the former, but on the other hand, it
opens new channels of scattering by breaking the orthogonality between the electron wave
function and a phonon mode with different index. Usually, the second effect wins, resulting
in a increase in the electron-confined optical phonon scattering rates.

[ 4. The ensemble average transport lifetime in a quantum wire can be negative if the Fermi
velocity (determined by carrier concentration) is less than the sound velocity. Such a negative
| lifetime can cause very low field velocity overshoot.

} 5. There can be an anomalous cooling effect whereby the electron temperature can fall below
the lattice temperature when an electric field is applied over a quantum wire. The electrons
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2.3

gain energy from the electric field, but lose energy at a faster rate by emitting phonons. As
a result, the electron gas cools in an electric field.

. The electron temperature at a lattice temperature of 300 K can be less than the electron

temperature at a lattice temperature of 77 K when a magnetic field is present since phonon
emission (and hence energy relaxation) is more efficient at 300 K.

. Both exciton and biexciton binding energies in a quantum wire are enhanced by a magnetic

field. This effect is opposite to that caused by an electric field. Whereas an electric field
reduces the binding energy by exerting equal and opposite forces on an electron and hole, a
magnetic increases the binding energy by squeezing an electron and hole wave function closer
together. There is a whole bevy of magneto-optic effects that are analogs of well-known
electro-optic effects.

. Both second- and third-order susceptibiltiesof a quantum wire are enhanced by a magnetic

field. The magnetic field allows one to tune the differential non-linear refractive index and
absorption in a quantum wire thereby allowing flexible device design.

. A magnetic field can be used to spectrally separate regions of high refractive index and high

absorption. As a result, it is possible to sustain polariton transport in an array of quantum
wires where both efficient waveguiding and low-loss propagation is possible. This has serious
implications for optical communications.
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. N. Telang and S. Bandyopadhyay, “Magnetic Field Dependence of Energy and Momentum

Relaxation Rates of Hot Carriers in a Quantum Wire Subjected to a Magnetic Field”, Phys.
Low Dimensional Struct. 9/10, 63-74 (1996).

. A. Svizhenko, A. Balandin and S. Bandyopadhyay “Giant Dipole Effect and Second Harmonic

Generation in Quantum Wires Biased with a Magnetic Field”, J. Appl. Phys. (in press).

. A. Balandin and S. Bandyopadhyay, “Dielectric Confinement of Magneto- Excitons and Biex-

citons in Quantum Wires”, submitted to Zh. Eksp. Teor. Fiz.: JETP.

. A. Balandin, A. Svizhenko and S. Bandyopadhyay, “Non-linear optical mixing in quantum

wires”, to appear in Quantum Confinement IV: Proc. of the 191st Meeting of the Elec-
trochemical Society; Fourth International Symposium on Quantum Confinement: Nanoscale
Materials, Devices and Systems, Montreal, Canada, May 4-9, 1997.

. A. Balandin and S. Bandyopadhyay, “Polariton transport in semiconductor quantum wires”,

to appear in Quantum Confinement IV: Proc. of the 191st Meeting of the Electrochemical
Society; Fourth International Symposium on Quantum Confinement: Nanoscale Materials,
Devices and Systems, Montreal, Canada, May 4-9, 1997.

. A. Balandin, A. Svizhenko and S. Bandyopadhyay, “Refractive Index of a Quantum Wire

Around a Polariton Resonance”, to be presented at the Tenth International Conference on
Superlattices, Microstructures and Microdevices, Lincoln, Nebraska, USA.

A. Svizhenko, A. Balandin and S. Bandyopadhyay, “Linear and Non-linear Magneto-optical
Properties of a Quantum Wire Associated with Inter-Magnetoelectric Subband Resonances”,
to be presented at the Tenth International Conference on Superlattices, Microstructures and
Microdevices, Lincoln, Nebraska, USA.

o



8. A. Balandin, A. Svizhenko and S. Bandyopadhyay, “Effective Breaking of Inversion Symmetry
in a Quantum Wire with a Magnetic Field”, to be presented at the International Conference
on Nanostructures, NANO’97, Repino, Russia, June (1997).

9. S. Bandyopadhyay, A. Balandin and A. Svizhenko, “Dielectric Enahancement of the Oscillator
Strengths and Binding Engeries of Magneto- Excitons and Biexcitons in a Quantum Wire”
Spring Meeting of the American Physical Society, Kansas City, MO, 1997.

10. A. Svizhenko, A. Balandin and S. Bandyopadhyay, “Giant Dipole Effect and Second Harmonic
Generation in Magnetic Field Biased Quantum Wires”, Spring Meeting of the American
Physical Society, Kansas City, MO, 1997.

11. S. Balandin and S. Bandyopadhyay, “Exciton-Polariton Transport in Quantum Wires”, March
Meeting of the American Physical Society, Kansas City, MO, 1997.

2.4 Personnel
1. Prof. Supriyo Bandyopadhyay, principal investigator
2. Dr. Nina Telang, Research Engineer, Motorola, Inc, Austin, TX

3. Dr. Alexander Balandin, post-doctoral associate, University of Nebraska

Dr. Balandin was a graduate student working on this grant who received his Ph.D. in December
1996.




1

10.

11.

12.

I 13.

.

3 Reference

S. Chaudhuri and S. Bandyopadhyay, “Numerical Calculation of Hybrid Magnetoelectric
States in an Electron Waveguide”, J. Appl. Phys., 71, 3027 - 3029 (1992); S. Bandyopadhyay,
S. Chaudhuri, B. Das and M. Cahay, “Features of quantum magnetotransport and electro-
migration in mesoscopic systems” Superlattices and Microstructures, 12, 123 - 132 (1992); S.
Chaudhuri, S. Bandyopadhyay, and M. Cahay, “Spatial Distribution of the Current, Fermi
Carriers, Potential and Electric Field in a Disordered Quantum Wire Subjected to a Magnetic
Field” Phys. Rev. B 47, 12649 (1993).

. N. Telang and S. Bandyopadhyay, “Quenching of Acoustic Phonon Scattering of Electrons in

Semiconductor Quantum Wires Induced by a Magnetic Field” Appl. Phys. Lett. 62, 3161
(1993).

. N. Telang and S. Bandyopadhyay, “The Effect of a Magnetic Field on Electron Phonon

Scattering Rates”, Phys. Rev. B, 48, 18002 (1993).

N. Telang and S. Bandyopadhyay, “Modulation of Electron Phonon Scattering in Quantum
Wires by a Magnetic Field”, Semicon. Sci. Technol. 9, 955-957 (1994).

. N. Telang and S. Bandyopadhyay, “Negative Transport Lifetimes in Quantum Wires”, Phys.

Rev. Lett., 73, 1683-1685 (1994).

. N. Telang and S. Bandyopadhyay, “Effect of a Magnetic Field on Hot Electron Transport in

a Quantum Wire“, Appl. Phys. Lett. 66, 1623-1625 (1995).

N. Telang and S. Bandyopadhyay, “Monte Carlo Simulation of Hot Electron Magnetotrans-
port in Quantum Wires at Low, Intermediate and High Electric Fields”, Phys. Rev. B 51,
9728 (1995).

. N. Telang and S. Bandyopadhyay, “Magnetic Field Dependence of Energy and Momentum

Relaxation Rates of Hot Carriers in a Quantum Wire Subjected to a Magnetic Field”, Phys.
Low Dimensional Struct. 9/10, 63-74 (1996).

. A. Balandin and S. Bandyopadhyay, “Excitons in a Quantum Wire Subjected to a Magnetic

Field”, Phys. Rev. B 52, 8312 (1995).

A. Balandin and S. Bandyopadhyay, “Magneto-Biexcitonic States in a Quantum Wire”, Phys.
Rev. B 54, 5712 (1996).

A. Balandin and S. Bandyopadhyay, “Theoretical Studies of the Effects of a Magnetic Field
on the Excitonic Non-Linear Optical Properties of Quantum Wires”, Phys. Rev. B 54, 5721
(1996).

A. Balandin and S. Bandyopadhyay, “Biexcitons in a Quantum Wire Subjected to a Magnetic
Field”, in Quantum Confinement III: Quantum Wires and Dots, Eds. M. Cahay, S. Bandy-
opadhyay, J-P Leburton and M. Razeghi, (The Electrochemical Society, Inc., Pennington,
New Jersey, 1996), p. 117.

A. Svizhenko, A. Balandin and S. Bandyopadhyay “Giant Dipole Effect and Second Harmonic
Generation in Quantum Wires Biased with a Magnetic Field”, J. Appl. Phys. (in press).

A. Balandin and S. Bandyopadhyay, “Dielectric Confinement of Magneto- Excitons and Biex-
citons in Quantum Wires”, submitted to Zh. FEksp. Teor. Fiz.: JETP.

o




15

25.
26.

) o

16.

17.

18.

19.

20.

21.

22.

23.

24.

. A. Balandin and S. Bandyopadhyay, “Binding Energy and Length of Quasi One-dimensional
Excitons in a Magnetic Field”, Superlattices and Microstructures 19, 97 (1996).

A. Balandin and S. Bandyopadhyay, “Non-linear Differential Refractive Index and Absorption
in Quantum Wires in the Presence of a Magnetic Field”, Superlattices and Microstructures
(in press).

A. Balandin, A. Svizhenko and S. Bandyopadhyay, “Third-order Magneto-excitonic Non-
linearities in Quantum Wires”, presented at Nanostructures 96, St. Petersburg, Russia, June
24-28, 1996 (also in Abstracts of Invited Lectures and Contributed Papers, Nanostructures
96, Russian Academy of Sciences, p. 294).

A. Balandin and S. Bandyopadhyay, “Non-linear Differential Refractive Index and Absorption
in Quantum Wires in the Presence of a Magnetic Field”, presented at the Ninth International
Conference on Superlattices and Microstructures, Liege, Belgium, July 14-19 (1996).

A. Balandin, A. Svizhenko and S. Bandyopadhyay, “Non-linear optical mixing in quantum
wires”, presented at the 191st Meeting of the Electrochemical Society; Fourth International
Symposium on Quantum Confinement: Nanoscale Materials, Devices and Systems, Montreal,
Canada, May 4-9, 1997.

A. Balandin and S. Bandyopadhyay, “Polariton transport in semiconductor quantum wires”,
presented at the 191st Meeting of the Electrochemical Society; Fourth International Sym-
posium on Quantum Confinement: Nanoscale Materials, Devices and Systems, Montreal,
Canada, May 4-9, 1997.

A. Balandin, A. Svizhenko and S. Bandyopadhyay, “Refractive Index of a Quantum Wire
Around a Polariton Resonance”, to be presented at the Tenth International Conference on
Superlattices, Microstructures and Microdevices, Lincoln, Nebraska, USA.

A. Svizhenko, A. Balandin and S. Bandyopadhyay, “Linear and Non-linear Magneto-optical
Properties of a Quantum Wire Associated with Inter-Magnetoelectric Subband Resonances”,
to be presented at the Tenth International Conference on Superlattices, Microstructures and
Microdevices, Lincoln, Nebraska, USA.

A. Balandin, A. Svizhenko and S. Bandyopadhyay, “Effective Breaking of Inversion Symmetry
in a Quantum Wire with a Magnetic Field”, to be presented at the International Conference
on Nanostructures, NANO’97, Repino, Russia, June (1997).

S. Bandyopadhyay, A. E. Miller and A. Balandin, Non-linear Optical Properties of Self-
Assembled Structures: Theory and Experiment, to be presented at the International
Conference on Laser Surface Processing, Limoges, France, Septmeber 8-12, 1997.

A. Balandin, A. Svizhenko and S. Bandyopadhyay, “Non-linear magneto-optical properties
of quantum wires”, presented at the Midwest Solid State Physics Symposium, University of
Nebraska, Lincoln, October 17, 1996.

S. Bandyopadhyay, A. Balandin and A. Svizhenko, “Dielectric Enahancement of the Oscillator
Strengths and Binding Engeries of Magneto- Excitons and Biexcitons in a Quantum Wire”
Spring Meeting of the American Physical Society, Kansas City, MO, 1997.

A. Svizhenko, A. Balandin and S. Bandyopadhyay, “Giant Dipole Effect and Second Harmonic
Generation in Magnetic Field Biased Quantum Wires”, Spring Meeting of the American
Physical Society, Kansas City, MO, 1997.

T




28. S. Balandin and S. Bandyopadhyay, “Exciton-Polariton Transport in Quantum Wires”, March
Meeting of the American Physical Society, Kansas City, MO, 1997.




l

APPENDIX

Publications.



Abstract Submitted
for the MAR97 Meeting of
The American Physical Society

Sorting Category: 17.b

Giant Dipole Effect and Second Harmonic Genera-
tion in Magnetic-Field-Bised Semiconductor Quantum Wires
ALEXEI SVIZHENKO, Department of Electrical Engineering, Univer-
sity of Notre Dame, Notre Dame, IN., ALEXANDER BALANDIN,
SUPRIYO BANDYOPADHYAY, Department of Electrical Engineering,
University of Nebraska, Lincoln, NE. — We have theoretically studied
the giant dipole effect in magnetic-field-biased semiconductor quantum
wires. The dipoles are associated with transitions between magneto-
electric subbands within the conduction band; some of these transitions
are forbidden in the absence of the magnetic field. The possibility of sec-
ond harmonic generation in a quantum wire biased with a magnetic field
has also been examined. We will show that the simultaneous presence of
a symmetric confinement (electrostatic) potential and an external mag-
netic field may lead to uneven charge distribution along the width of the
wire which breaks the inversion symmetry in a generic quantum well or
wire. This results in a non-zero third-order susceptibility and associated
optical nonlinearity. This work was supported by the US Army Research
Office under contract DAAH04-95-1-0586 and DAAH04-95-1-0527.

Alexander Balandin
abalandi@engrs.unl.edu

Prefer Oral Session Department of Electrical Engineering
Prefer Poster Session University of Nebraska, Lincoln, NE.
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The American Physical Society
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Dielectric Enhancement of the Oscillator Strengths
and Binding Energies of Magneto-Excitons and Magneto-
Biexcitons in Quantum Wires SUPRIYO BANDYOPADHYAY,
ALEXANDER BALANDIN, Department of Electrical Engineering, Uni-
versity of Nebraska, Lincoln, NE., ALEXEI SVIZHENKO, Department
of Electrical Engineering, University of Notre Dame, Notre Dame, IN.
— We will report a partly variational calculation of magneto- exci-
ton and biexciton (excitonic molecule) binding energies in a rectangular
semiconductor quantum wire taking into account dielectric confinement
effects. The discontinuity of the dielectric constant at the boundaries be-
tween the wire and surrounding medium causes redistribution of electric
field which leads to higher binding energies of excitons and biexcitons.
The dielectric confinement effects are introduced via the image-charge
method. Strong dielectric enhancement of the exciton binding energies
(up to 2.5 times) and oscillator strengths is found for quantum wires of
the dimensions comparable to the exciton Bohr radius. The enhance-
ment decreases substantially in a magnetic field because of a charge
cancellation effect. This work was supported by the US Army Research
Office under contract DAAH04-95-1-0586 and DAAH04-95-1-0527.

Alexander Balandin

abalandi@engrs.unl.edu
Prefer Oral Session Department of Electrical Engineering
Prefer Poster Session University of Nebraska, Lincoln, NE.

Date submitted: December 3, 1996 Electronic form version 1.2



Abstract Submitted
for the MAR97 Meeting of
The American Physical Society

Sorting Category: 17.b

Exciton-Polariton Transport in an Array of Semicon-
ductor Quantum Wires ALEXANDER BALANDIN, SUPRIYO
BANDYOPADHYAY, Department of Electrical Engineering, University
of Nebraska, Lincoln, NE. — Polariton effects play an important role
in low temperature absorption of bulk and nanostructured semiconduc-
tors in the spectral range close to the exciton resonance frequencies.
The formation of polaritons (exciton-photon coupled states) modifies
the transport of light through the medium. In particular, the medium
of propagation becomes substantially more transparent provided that
the exciton-polariton coherence length, critical temperature and exciton
decay parameter meet certain criteria. We will show that in a properly
designed array of quasi one-dimensional structures (quantum wires) of
dimensions comparable to the exciton Bohr radius, the application of
an external magnetic field can strongly increase the critical exciton-
polariton coherence length and the critical temperature. Qur numerical
results are based on a partially variational calculation of the exciton
longitudinal-transverse splitting as a function of wire dimensions and
magnetic flux density. The temperature dependence is evaluated un-
der the assumption that interactions with acoustic and polar optical
phonons are the dominant scattering mechanisms for excitons. This
work was supported by the US Army Research Office under contract
DAAHO04-95-1-0586 and DAAH04-95-1-0527.

Alexander Balandin
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Dielectric Confinement of Magneto- Excitons
and Biexcitons in Quantum Wires

A. Balandin*and S. Bandyopadhyay
Department of Electrical Engineering
University of Nebraska
Lincoln, Nebraska 68588 U.S.A.

The! effect of dielectric confinement on magneto- excitons and biexcitons
in a quantum wire, surrounded by a medium with lower dielectric cosntant,
is investigated theoretically. For free-standing wires, very strong dielectric
enhancement of binding energies and oscillator strengths, along with a con-
comitant decrease in radii, is found for wires whose widths are comparable to
the effective Bohr radius of the exciton. In GaAs wires, the combination of
dielectric confinement, quantum confinement and magnetostatic confinement
can make both the exciton and biexciton binding energies exceed the room-
temperature thermal energy for realistic wire widths. We also show how a
magnetic field can be used to experimentally separate the effect of dielectric

confinement and quantum confinement.

*On leave from the Moscow Institute of Physics and Technology, Dolgoprudny, Russia
1PACS Indices: 78.20.Ls, 73.20.Dx, 78.66.-w




I. INTRODUCTION

Quasi one-dimensional structures (quantum wires) exhibit enhanced ex- -
citon and biexciton binding energies and oscillator strengths which endow

them with strong non-linear optical properties!=>.

The enhancements ac-
crue primarily from quantum confinement which is spatial confinement of
the electron and hole wavefunctions in a quasi one-dimensional region. This
confinement can be increased further by a magnetic field which “squeezes”
the electron and hole wave functions into edge-states or cyclotron orbits. At
the same time, if the medium surrounding the wire has a smaller dielec-
tric constant, then the effective dielectric constant of the entire system is
reduced which then reduces the screening of the attractive interaction be-
tween an electron and a hole. As a result, an electron and a hole become
even more tightly bound and this increases the binding energy and oscilla-

6-8  In this paper, we examine this latter effect - the

tor strengths further
so-called “dielectric confinement” - in the presence of a magnetic field.
While dielectric confinement effects in quantum wells and dots have been

studied®10

, scant attention has been given to quantum wires. So far, the very
few theoretical treatements that have been reported for wires have concen-
trated narrowly on specific geometries and carrier density regimes. In ref.
[11], the effect of dielectric confinement on exciton binding energy was found
variationally for cylindrical wires whose radii R were much smaller that the
exciton Bohr radius ap. The mathematical model in this work is valid only
when R << ap and is therefore of limited use. Ref. [12] treated a wedge
shaped wire. We consider a wire of rectangular cross-section. To our knowl-

edge, ours is also the first study where the effect of an external magnetic

field has been taken into account. Furthermore, we have also examined the




effect of dielectric confinement on biezcitons. This is an extremely important
topic since exciton-exciton interaction leading to the formation of biexcitons
(and possibly higher order excitonic complexes) is the major source of opti-
cal non-linearity in quantum wires'®!*. Increased biexciton binding energies
translate into increased third-order dielectric susceptibility (and therefore
increased optical non-linearity) in quantum wires. Finally, any increase in
biexciton binding energy makes these complexes more stable and therefore
improves the chances of experimental observation.

This paper is organized as follows. In the next section, we present the

theory. This is followed by results and finally the conclusion.

II. THEORY

A. Dielectrically confined magneto-excitons

We consider a quantum wire of rectangular cross-section as shown in Fig.
1 (a) with infinite potential barriers located at y = +L,/2 and z = £+L,/2.
A magnetic field of flux density B is applied along the z-direction. For
nondegenerate and isotropic bands, the Hamiltonian of a free Wannier-Mott

exciton in this system is given within the envelope-function approximation

by
~ 2 R “ . R .
Iix = _PX +£ﬁ+py=2+pzc2 +pyh2+p2h2 (1)
2M  2u 2m, 2my,
eB(y. — s . etB?
# BN p b ey uh e + S5 e+ )

+ UC(xe) ZhyYey Yhy 2e; Zh) + US(ym Yhy Ze,y Zh) + UD(ye; Yhy Ze, zh.))

where we have chosen the Landau gauge for the magnetic vector potential

A = (=By,0,0).



The quantities me, My, (Teh, Ye b Ze,n) are the effective masses (coordinates)
of electrons and holes respectively, 1/u(= 1/me+1/my,) is the reduced mass,
M (= m. +my) is the total mass, Ug(Ze, Th, Ve, Yr, Ze, 21) is the electron-hole
Coulomb interaction energy, Us(Ye, Yn, 2, 21) is the spatial confinement po-
tential energies for electrons and holes along the transverse y and z direc-
tions, and Up(Ye, Yn, Ze, 2) is the dielectric confinement for electrons and
holes along y and z directions arising from the redistribution of the electric
field due to the discontinuity of the dielectric constant at the wire inter-
faces. We neglect Zeeman splitting sincg the Landé g-factor is small in most
technologically important semiconductors.

For convenience, we replaced z.,-coordinates in Eq. (1) by the center-

of-mass (X) and relative coordinate (z):
X = (MeZe + mpzh)/M,
T =T — Th.

For free-standing quantum wires (surrounded by air or vacuum), we can

assume hard-wall boundary conditions:

US(ye’yha ze) zh) = 0, ze,h < Lz /\ yg’h < Ly (2)

= o0, otherwise.

Finite barrier heights introduce only small corrections for wires with width
and thickness > 50 A; therefore, our results are quite general for wires of
realistic widths.

The Coulomb interaction between any two charged particles in a quantum
wire is given by its full three-dimensional form

e2

dmew|(Te — Tn)2 + (Ye — Yn)? + (2e — 20)?|1/%’

(3)

UC('TC7 ZhyYes Yny Ze, Zh) =+



where ¢, is the dielectric constant of the wire.
To calculate the dielectric cqnﬁnement energy, Up, we adopt the image-
charge method which is known to provide good qualitative agreement with

81516 The image-charge method, which is well-established in

experiments
electrostatics, accounts for the electric field induced by charged particles in
parallel or spherical geometries by means of imaginary charges placed in sur-
rounding media.!” The values of the image-charges are determined from the
continuity conditions for the electrostatic potentials and the normal compo-
nents of the displacement vector at the interfaces. Following the derivation

of Refs. [9, 10], we can write the dielectric confinement potential of an

electron-hole pair within the quantum wire as

Up = Uy + ULl + UG, (4)
where
2 oo 00 [{|+|m|
@ _ € 3

_ & , 5
T 2y z.—;z_:oo m:z—oo [(Ye = Yeum)? + (2 — Zeam)?]H/? ®)

o - glilHm]
g 3 6
Yuels = 2fw z_z_:oo m;oo [(Yn ~ Yapm)? + (20 — 2nam) M’ ©

[ 0 §|l|+|ml

ew l=—00o m=—00 [(me - xh)z + (ye - yh:l’m)2 + (ze - zhylym)2]1/2 .

(7)

and

(zm Ya,l,m Za,l,m) = (xa; Lyl + ('—1)l'yay L,m+ (_1)1712&)’

with & = e or h; and [, m = —00, ...,00. The l = m = 0 term is excluded from
the summation in Eqs. (5)-(7). The dielectric constant of the surrounding
medium is assumed to be less than the dielectric constant of the wire material

(€5 < €y), which is usually the case in real systems. Finally, the quantity
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€ = (€yw — €)/(€w + €) is a measure of the dielectric misfit between the
quantum wire material (dielectric constant €,) and the boundary material
(dielectric constant €5).

One can see from Eq. (4) that the dielectric confinement term, Up, is
written as a sum of two positive self-energy terms resulting from repulsive
interactions of electron -“electron image” (hole - “hole image”); and a neg-
ative term which is due to attractive interaction between electron - “hole
image” (hole - “electron image”). The summations over the infinite series in
Egs. (5) - (7) come about because any charge image, in turn, creates another
image in the opposite flat boundary of the wire (see Fig. 1 (b)).

For materials with a small dielectric misfit (e.g. CdS dispersed in alumina
for which € = 0.5), one can retain only the first order terms (|I|+|m| =1) in
Egs. (5) - (7); for material systems with higher dielectric misfit (such as GaAs
surrounded by air for which € & 0.9), higher order terms are required. For the
sake of illustration, we will write the first order terms in Up explicitly. Setting
I =0 and m = *x1 we obtain the terms which correspond to interactions of
the electron and hole with their images in the flat boundaries along z direction
(L, is the thickness of the wire). Similarly, setting m = 0 and [ = +1 we
obtain the terms which correspond to interactions of the electron and hole
with their images in the flat boundaries along y direction (L, is the width of

the wire). Combining these terms together, we get

2
(e) — le_ €y — € 1 1 8
Usels +2 ew(ew—{-eb) |22, — L,| + |22, + L,| ®)
+ LI
120e — Ly|  [2ye + Ly|’
1€ e, — € 1 1
Ul = 4o (X + 9
self +2ew(ew+eb |2z, + L,| |22, — L,| )




and

(e=h) €2 €, — € 1

Usttr T = —— ) 10
o fw(fw+eb {\/z2-}-1,/2—+-(Lz+ze+zh)2 (10)

1
\/:t:2 +y2+ (L, — z. — 23)?
1
V22 + (Ly + Ye + yn)? + 22
1

}.
\/a;2 + (Ly — ye — yn)? + 22

The exciton ground state in the system described by the Hamiltonian
of Eq. (1) is found variationally by minimizing the expectation value
< U|H X|¥ > where the exciton wave function ¥ is properly normalized.
We will be interested only in excitonic states that can be accessed optically.
Under optical excitation, the center-of-mass motion can be neglected since
the photon momentum is too small to create states of significant center-of-
mass kinetic energy. Therefore, the wave function of an optically generated
exciton (s symmetry only) with center-of-mass momentum Py = 0 is given
by

U= III(;z;’ Yes Yhy Ze, Zh) = gt(-’L', n)¢e(ye7 ze)"/)h(yh.) zh) (11)

= +(, 1) Pe(Ye) Dr(Yn) Xe(2e) Xn (21),

where g is the x-component of the exciton wave function, and ¢ and x are
respectively the y- and z-components of independently confined electron and
hole making up an exciton.

The separation of the wave function into a product of g, ¢ and x in
Equation (11) is permissible only in the limit of weak Coulomb interaction

between the charged particles, i.e. for materials with relatively large dielectric

7




constants (narrow gap semiconductors). The z-component X p(zes) is not
affected by a magnetic field oriented along the z-direction. Therefore, it is a

particle-in-a-box state:

/ 2 Ze
Xe,h(ze,h) = -l—_l—cos(wfﬁ). (12)

The y-component of the electron and hole wave functions, ¢, x(ye), are af-
fected by the magnetic field and are calculated numerically. This is done
by solving the one-particle Schrodinger equation using a finite difference
scheme.18

Finally, the x-component of the wave function (i.e. the component along

the free direction or wire axis) is given by a Gaussian-type “orbital” function:

1 .2 1/4 —(z/n)?
gn(x,ﬂ)=7—717§(;)/6 (/) (13)

The ground state exciton binding energies E4 can now be found using

the relation®

Ef = Egup + Bty + By + EQ) - B (14)

C $

Here E¢L, ¢, B, are the lowest electron and the highest heavy hole magneto-
electric subband energies in the quantum wire measured from the bottom of
the bulk conduction band and the top of the bulk valence band respectively.
The total energy E*! is determined by minimizing the expectation Qalue of

the total Hamiltonian by varying the parameter 7, i.e.,

E¥ = min, < U|HX|¥ >, (15)

and the electron self-energy E) ; is given as

Egz%f =< ¢e(ye7ze)|U§:l)fl¢e(yerZe) >. (16)




The hole self-energy is obtained from the last expression by substituting the
hole index “A” in place of the electron index “e.”

The evaluation of self-energy integrals in Equation (16) is not straight-
forward because of the unphysical divergences associated with the “poles”
of the self-energies in Equations (8) and (9). These divergences are a conse-
quence of assuming that the dielectric constant changes abruptly at the wire
interface (this is also equivalent to assuming that the induced surface charge
has no spatial extension). In order to avoid these divergences, we adopt the
approach of ref. [19] and assume that the surface charge is located symmet-
rically with respect to the boundary and has a spatial extension ¢ less than
the lattice constant. The self-energy terms are then calculated as “principal
values” with the replacement

1 s |22, + L,|
|22, £ L,| (22, £ L,)? + 42

(17)

Unlike the self-energy integrals, the Coulomb integrals < ¥|Us|¥ > and
< ¥|Uster|¥ > are “proper” integrals as long as Ug and Uy, of Egs. (3) and
(10) are treated in their full three-dimensional form. Despite the character-
istic 1/r singularity, these integrals do not diverge because in two or three
dimensions, the surface element 27rdr or the volume element 4nr?dr goes
to zero as rapidly as, or more rapidly than, r. Consequently, the integrals
< U|Uc|¥ > and < ¥|U,u,|¥ > are always finite if Uz and Uy, are treated
in their three-dimensional form. We cannot do the same for the self-energy
terms because they depend only on one coordinate - z or ¥ - and hence the
integration is effectively one-dimensional. Therefore, it becomes necessary
to introduce the artificial parameter §. Nonetheless, we always verify that
the final result of any calculation does not depend sensitively on 4. Typi-

cally, several orders of magnitude variation in ¢ introduces only a few percent

9




variation in the final result.
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B. Dielectrically confined magneto-biexcitons

In order to study the effect of dielectric confinement on magneto-
biexcitons, we use the same quantum wire geometry as in Fig. 1(a). Our
mathematical model will be based on several assumptions. First, we consider
the regime of intermediate carrier densities, n, for which the Wigner-Seitz
radius p, = (3/47n)Y3 >> ap, where ap is again the Bohr radius of the
exciton. Extremely high carrier densities (excitation levels) may lead to dis-
sociation of all excitonic complexes and formation of the electron-hole plasma
which is not within the scope of this work. Second, we neglect any polariton
effects which, in fact, may be important for very narrow wires.20:2!

For nondegenerate and isotropic bands, the Hamiltonian of a biexciton in
a quantum wire subjected to a magnetic field is given in the envelope-function
approximation by??

R* 02 52 n? | 02 92 82
s + )~ el - Vo)
2u- 03,  Oz3,° my 0z5  071,0Te  O%2p0Tgp
B 07 8? 02 0?
" om, Oy, 2 + 0yo? + 02,2 * 3Z22)
h? | 0? 0? 02 02
—2mh(8ya2 + Oyy2 + 02,2 * 321:2)

HXX =

e’B? y?+vy2  y2+yZ,  eBih, 8° 9?
+ 2 ( Me + my, )+ Me (1 0T1, T2 6:321,)
eBih 0? 0? 02
a A - a) ™ Y 1
* Mp (y 0%10 + (yb v )3%1: +y63$2b ( 8)

+ VC(l'e, ZhyYers Yhy ey Zh) + VS(ye’ Yhy Zey zh,) + VD (ye; Yhy Ze, Zh))

where Vs is the spatial confinement potential along the y and z directions,
Ve is the Coulomb interaction between various charged entities, and Vp is
the dielectric confinement for all four particles comprising a biexciton. The
electron coordinates bear numerical subscripts 1 and 2 while the hole co-

ordinates bear alphabetical subscripts a and b. For convenience, we again
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replace the coordinates in Eq. (18) by the center-of-mass (X) and relative

coordinates (z,,) using the following transformations?*2®

X = [me(z1 + z2) + ma(za + 73)]/2(me + my), (19)
Tia = T1— Za

Ty = T2 —Tp

Lob = Ta — Tb,

where a,7=1,2,qa,b, and a # 7.

As in Eq. (2), the spatial confinement potential Vs is given by

VS(yl,m Y2,by 21,05 z?,b) = 07 21,0,2,b < LZ A Y1,a,2,6 < Ly (20)

= o0, otherwise.

The Coulomb interaction term is given by

et (-1 (=1) (-1)
VCoulomb = { + + +
ame Ve +ris \/ 3 + 13, \/ 3 + 13
<y , 1 ., 1
\ﬁ%a + 73, \/ Toy + T2 \/ 235 + 112

b (21)

where

7"27 = (Ya — y7)2 + (20 — 27)2,

Zay = Ta — I

with o,y =1,2,a,b, and o # v.

The dielectric confinement term Vp is analogous to Egs. (4)-(7). The
only principally different terms which appear in the biexciton problem and
are not present in the exciton problem are the repﬁlsive electron - “another
electron-image” (hole - “another hole-image”) interactions. These terms have

the same structure as the attractive terms but bear the opposite sign. For
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the sake of illustration, we have written the first-order terms explicitly in the
Appendix.

The variational procedure for calculating the biexciton binding energies
is the same as that reported in ref. [22, 23]. The trial wave function is chosen
to be a singlet state with the electron-hole pair contribﬁ;ions given by the

Gaussian-type “orbital” functions:

1
® = —'{wla")b% + '¢'2a¢lb}Gab($ab)a (22)
S
where
Yoy = JayPa (ya)Xa(za)¢7 (%)X'r(z’y): (23)
with
Ga (xab) = e_zzb/Tz, (24)
and
g1o = e77h/", (25)
9oy = €7/, (26)
G20 = e—(zzb"zab)z/ﬂ2, , (27)
glb —_ e'—(xla‘l"zab)z/nz’ (28)

The wave functions g,, are Gaussian orbitals whose “spread” 7 and 7 are
variational parameters. It is obvious that these parameters physically cor-
respond to the electron-hole and hole-hole separations along the length of

the quantum wire. The quantity S is a normalization constant and @ (e »)
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[Xe,n(2ep)] are y-components [z-components] of the wave functions of inde-
pendently confined electrons and holes as in the previous section.

In our own previous calculation of the magneto-biexciton binding energies
in ref. [22], we employed two variational parameters: 7 and 7. The use of only
two variationdl parameters tacitly assumes that the electron-hole separation
in a biexciton is the same as that in a free exciton. In the present work,
we do away with this assumption and improve on our previous calculations
by including a third variational parameter n*, which allows the electron-hole
pair within the biexciton to relax. This is done following Ref. [24]. The

biexciton binding energy E4* is found from the relation
EXX = min, p» < UIHXX|¥ > —2min, < $|H |y >, (29)

where min,,» < U|HXX|¥ > is found by minimizing the expectation value
of the Hamiltonian HXX with respect to the hole-hole variational parameter
7 and the electron-hole relaxation parameter *, while min, < ¢|HX|¢) > is
found as described in the previous section.

Before concluding this section, we should make a few remarks about the
numerical details. As we have already mentioned in the previous section,
the Coulomb terms treated in their full three-dimensional form do not cause
divergence, and can be handled without introducing any ad hoc truncation
procedure. However, this strategy is also CPU-costly since the number of
independent coordinates (spatial dimensions) increases threefold. The cal-
culation of the expectation value of the bieﬁciton Hamiltonian involves eval-
uation of multi-dimensional integrals (n = 9) in real space. The evaluation
is achieved by iterated applications of product Gauss formulas. The integral
is first estimated by a two-point tensor product formula in each coordinate

direction. Then for ¢ = 1, ..., n the routine calculates a new estimate by dou-
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bling the number of points in the i—th direction, but halving the number

immediately afterwards if the new estimate is not appreciably different.

III. RESULTS AND DISCUSSION

A. Magnetoexciton and magnetobiekciton binding

energies

All the results that we present in this section are relevant to free-standing
GaAs quantum wires surrounded by vacuum or air. Electron and hole effec-
tive masses are assumed to be 0.067mg and 0.5mq respectively. The relative
permittivity of GaAs, €,, is taken as 12.9. The dielectric misfit between
GaAs and vacuum is estimated to be £ = 0.856.

The binding energies of dielectrically confined magneto-excitons are cal-
culated from Egs. (14) - (16). In order to give some idea about the relative
scale of the terms in Eq. (14), we present in Fig. 2 the confinement energies
(the magneto-electric subband bottom energies E2y, ; and E*.) as functions
of the wire width for two different values of a magnetic flux density. The fun-
damental band gap energy Eg in Fig. 2 is assumed to be zero for clarity.
Although not shown in the figure, the values of the self-energy terms are
about 20-30% higher than the corresponding confinement energies.

In Fig. 3, we present the ground state binding energy of a dielectrically
confined exciton as a function of wire width L,. For comparison, the binding
energy without dielectric confinement effects is shown by the dashed line.
The dash-dotted curve in Fig. 3 represents the case when only first order
terms in Eq. (5)-(7) were taken into account. As one can see the discrepancy

between this curve and the solid curve which is obtained using higher order

terms (up to 4th) is quite pronounced. This difference is always appreciable
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for material systems with large values of dielectric misfit £ > 0.5. When
the dielectric misfit is not large (e.g. the GaAs/AlGaAs system rather than
the GaAs/vacuum system), just the first order correction may be enough.
The binding energy always decreases with increasing wire width for all cases
as expected because of decreasing spatial (electrostatic) confinement. For a
200 A thick wire, the exciton ground state binding energy is enhanced by
approximately 2.7 times because of dielectric confinement. Note that the
binding energy is larger than the room-temperature thermal energy (kT =
26 meV) for wire widths less than 300 A.

The exciton radius (or more correctly the longitudinal length) along the
z direction is given analytically as p = V< 22> = /24 for the chosen
trial wave function in Equation (11). This radius is shown in Fig. 4 as a
function of the wire width with and without dielectric confinement taken into

“account. It is interesting to note that the ratio (8 = p - pp)/p shows very
weak dependence on the wire width L,. Here pp is the the exciton radius
in a system with dielectric confinement and p is the same without dielectric
confinement.

In Fig. 5 we present the dependence of the exciton radius on magnetic
flux density for two cases: (i) with dielectric confinement, and (ii) without
dielectric confinement. The important thing to note is that the difference
between the two curves decreases with increasing magnetic flux density. The
exciton radii ratio 8 depends quite strongly on magnetic field. For the wire
with dimensions Ly X L, = 5004 x 2004, the ratio can be approximated as
B = 0.128 — 0.0062B, where B is in tesla. This monotonically decreasing
dependence of § on B can be easily explained. A magnetic field squeezes

the exciton wave function along all directions,®?* pushing the electron and

16



the hole closer together. As a result, the exciton increasingly approximates
a truly electrically neutral uncharged single particle rather than a bound
electron-hole pair. Since a chargeless particle has no image charge, the di-
electric confinement effect falls off rapidly.

The strong dependence of § on magnetic field has a very important im-
plication. It appears that because of this feature, a magnetic field can be
used to separate the effects of spatial confinement and dielectric confinement
on the exciton radius. This could not be done by varying the wire width or
spatial confinement (e.g. in split-gate quantum wires) since evidently 8 does
not depend sufficiently strongly on L, (recall Fig. 4).

Fig. 6 shows the corresponding dependence of the exciton binding energy
on the magnetic flux density for the same wire dimensions as in Fig. 5. As one
can see, the difference between binding energies with and without dielectric
confinement, AE%, does not depend on the magnetic field as strongly as the
difference between the radii. The magnitude of the dielectric enhancement
of the binding energy is in a good qualitative agreement with experimental
results published for quantum wells®!%. Unfortunately, no data are available
yet for quantum wires so that a quantitative comparison is not possible.

The increase in the binding energy and the decrease in the radius as a
result of dielectric confinement can be simply ascribed to a lowering of the
effective dielectric constant (and henée the screening) in the entire system
due to the image charges. A magnetic field reduces the image-charge effect
because it squeezes the electron and hole togther thereby tending to con-
dense them into an uncharged single particle. Cosnequently, a magnetic field
quenches the dielectric confinement.

In Fig. 7 we present the dependence of the exciton radius on dielectric
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misfit with and without the magnetic field present. As one should expect,
the radius decreases with increasing misfit for both cases provided that the
dielectric constant of the surrounding material is lower than that of the wire.
This is simply a validation of the fact that a higher dielectric misfit results
in a higher dielectric confinement. Furthermore, the exciton radius is more
sensitive to dielectric confinement if there is no magnetic field. The physics of
it is intuitively obvious: the wave function of the exciton in a quantum wire
subjected to the field (10 tesla) is already compressed due to strong magneto-
static confinement and does not “feel” the additional dielectric confinement
as much.

The corresponding dependence of the exciton binding energy on the di-
electric misfit is shown in Fig. 8. It is interesting to note that the dependence
is almost exactly linear: for the magnetic flux density of 10 tesla it can be
approximated by the interpoiation formula B ~ 9.240 + 16.376 £ +0.089 &2
where the pre-factor of the quadratic term is more than two-orders of mag-
nitude smaller than thaf of the linear term.

In Fig. 9 (a) we present the magneto-biexciton binding energy as a func-
tion of the magnetic field for two cases: with dielectric confinement and
without it. As we can see, the overall behavior of the binding energy is
similar to that in the case of magneto-excitons, although the dielectric con-
finement effect is not so pronounced. The weaker effect is probably caused
by the fact that there are like-charged entities (two holes and two electrons)
in a biexciton that repel. As a result, the dielectric confinement effect is not
so strong. Fig. 9 (b) shows the biexciton binding energy as a function of the
wire width. It is interesting to note that in the presence of dielectric confine-

men (“+"marked curve) the binding energy exceeds the room-temperature
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thermal energy of 26 meV for wire width less than 100 A. Application of an
external magnetic field allows to exceed room-temperature thermal energy

for even wider wires.

III. DIELECTRIC ENHANCEMENT OF OSCILLA-
TOR STRENGTH

In this section, we examine the effect of dielectric confinement on os-
cillator strength. In order to calculate the oscillator strength of the exciton
transition, we need to evaluate the momentum matrix element which is given
by?

IMEP = |- [ dFiga )M (BP, (30)
where M., is the valence-band to conduction-band dipole matrix element
and k-f| = k. is the wave vector along the unconfined direction of the wire.
When the kTI dependence of M., is neglected, Eq. (30) reduces to the simple

expression

|M3, 12 = |Ma?|g:(z = 0,) . (31)

The exciton oscillator strength per unit length can be written as follows

2

MX?2 2
mohwgal pd (32)

fls=

Here Auw,, is the exciton ground state emergy and m, is the free electron
mass. The oscillator strength of the excitonic transition is proportional to the
square of the valence-band to conduction-band momentum matrix element
M,,, and to the probability of finding the electron and hole in the same unit
cell,?® i.e., the square of the exciton relative-motion orbital wave function
g:(z = 0,7).

In Fig. 10 we present the oscillator strength of the exciton transition per

unit length of the wire as a function of the wire width for two cases: (i) with
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dielectric confinement; (ii) without dielectric confinement . As one can see,
the dielectric constant discontinuity (dielectric confinement effect) causes a
20 % increase in the oscillator strength for the entire range of the wire dimen-
sions. The overall behavior of the oscillator strength curve is in an excellent
agreement with the data presented in Ref. [25] for the parabolic model ap-
proximation. The absolute value of the oscillator strength was calculated us-
ing the following material parameters: the fundamental band gap Eg = 1.519
eV, the Kane matrix element E, = 23 eV (related to momentum matrix ele-
ment), and the density of carriers per unit area ns = 7.89 x 10 /em?. For

the 200 A wire, the oscillator strength is about 0.85/nm without dielectric

confinement which is close to the value of 0.38/nm found in ref. [25] for
the same wire dimensions. The slight difference is due to different values of
effective masses assumed in ref. [25).

Fig. 11 shows the oscillator strength as a functiovn of a magnetic flux .
density. The magnetic field induced quenching of the dielectric confinement
effect is more pronounced in this figure than in the plot for the exciton
binding energy. Since |

fis / o(fw)dw, (33)
it appears that the integrated absorption, a quantity easily measured exper-
imentally, is quite sensitive to magnetic field.

The matrix element MZXX for the exciton-biexciton transition is given
by the overlap integral between the exciton and biexciton wave functions?’

which is in our notation
+
MEY =M, [ 4z /E djdzud, (34)
-0

where ¥ is the exciton wave function given by Eq. (11), @ is the biexciton

wave function given by Eq. (22), d% = dz,ydzy, dy = dy.dyydy,dys, dZ =
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dz,dz,dz;dz, and ¥ is a square region defined by wire lateral dimensions.
In order to capture only the internal motion of the biexciton, the following
conditions are imposed over the coordinates while perfofming the integration:
Tie =71 — %o =0, y1 —¥a = 0, 21 — z, = 0. This condition keeps first
hole (subscript “a”) and first electron (subscript “1”) at the same place
while allowing the other electron and hole to move (here the adjective “first”
should be interpreted loosely since of course both electrons and holes are
indistinguishable particles).

We have evaluated the integral in Eq. (34) numerically. Our results
showed that the exciton-biexciton matrix element (or the corresponding os-
cillator strength) increases only slightly with introduction of dielectric con-
finement. In order to obtain some intuition into the origin of this weak depen-
dence, we reproduce here the analytical result for this quantity obtained for
analogous but simpler trial wave functions. In Ref. [27] the exciton-biexciton
wave function overlap was evaluated analytically for simple “Gaussian-type”
orbital trial functions, and the exciton - biexciton transition matrix elemenﬁ

was found to be (in our notation)
7_
|MaX P = IMwl2[2;;\/ﬂDlgt(0,n)lza§, (35)

where 7 is the inter-hole distance in the biexciton and D denotes the di-
mensionality of the system. For quasi one-dimensional structures (D = 1)
and with no magnetic field present, the oscillator strength is proportional
to 7 and inversely proportional to the exciton radius n (since g; is propor-
tional to 1/,/7). Because both these quantities are about equally affected by
the dielectric confinement, they cancel each other’s effect so that the overall
oscillator strength is relatively insensitive to dielectric confinement.

Finally, in Fig. 12 we present the exciton-biexciton transition oscillator
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strength as a function of the magnetic flux density for two wire widths. The
sublinear behavior of the oscillator strengths at high values of the magnetic
flux density is due to strong Compression of the biexciton wave function for

B > 8 tesla.

IV. CONCLUSION

In conclusion, we have theoretically studied the effects of dielectric con-
finement on the binding energies, radii and oscillator strengths of magneto-
excitons and biexcitons. Dielectric confinement increases the binding energy
and oscillator strength while decreasing the radius. A magnetic field tends
to reduce the effect of dielectric conﬁnefnent by squeezing the charged enti-
ties (electrons and holes) together into an effective chargeless single particle.
Although a magnetic field reduces the dielectric enhancement of the binding
energy, it also introduces additional contribution to the binding energy be-
cause it squeezes the electrons and holes together. As a result, the net binding
energy increases monotonically with magnetic field. The resultant effect of
quantum confinement, dielectric confinement and magnetostatic confinement
may make both the exciton and biexciton binding energies exceed the room
temperature thermal energy in quantum wires of reasonable dimension which
has important ramifications for the experimental observation of these entities

in room temperature experiments.
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V. APPENDIX

The electron - image-hole (hole - image-electron) attractive terms for
the first electron (“1”) and the first hole (“a”) composing the biexciton are

analogous to Eq. (10) and can be written as follows

Ul = (GG ! (36)
it - T
- €w €t e fod 42+ (Lo + 2 + 2,)?
. 1
2 2 L — _ 2
zi, + Y+ (L — 21 — 2,)
N 1
\/"L‘%a + (Ly + W + ya.)2 + z%a

: 1 }
\/x%a + (Ly ) ya)2 + z%a

Here and throughout the Appendix we have used the same notation for the
coordinates as in the text. The remaining attraction terms Ug;b), Ua(f;“),
and Uﬂ;b) can be obtained by formal substitution of appropriate indices in
Eq. (36). |

The self-energy terms are analogous to Egs. (8), (9) and for the first hole

are given by

1€ e, — 6 1 1
U(a) — (v
self +2 €w €w+ € |22, — L, N |22, + L.| (37)
1 1
+

|2ya — Ly| " |2ya + Ly|
The rest of the self-energy terms, U,(;,)f, Us(fl)f, and US(Z}f can be obtained by
formal substitution of appropriate indices in Eq. (37).

The only new terms which appear in the biexciton problem, but do not
appear in the exciton problem, are the repulsive terms between electron -

“another electron image” (hole - “another hole image”). These terms have
g

the same structure as the attractive terms but with the opposite sign. The
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repulsive term for the electrons can be written as

U(l"?)

repuls

2 €w— 6 1

€
€uw €w T € \/:B%a. + y%a + (Lz + 2z + Za)2

1

(38)

V5t + vk + (L. — 21 — 2)?
1

\/x%z +(Ly +y1+y2)? + 2
1

}
\/35%2 +(Ly =1 —y2)? + 2y

Again, the rest of the repulsive terms U,(Zp;b,)s can be obtained by formal

substitution of appropriate indices in Eq. (38).

The group of attractive terms contains 16 x 2 separate interactions, the

group of self-energy terms has 16 interactions and the group of the repulsive

terms has 8 X2 separate interaction. Combining these terms together, we have

64 terms accounting for the Coulomb interaction between all charged entities

composing the biexciton and their images in the four plane boundaries of the

wire.
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FIGURE CAPTIONS

[1]. (a) The geometry of the wire. (b) Schematic structure of the wire along
y direction and illustration of the image-charge method. The original charge
is indicated by a double circle and the induced image charges are given by
single circles.

[2]. The magneto-electric subband bottom energies gL, . and E2L as func-

conf
tions of the wire width for two different values of a magnetic flux density. The
wire thickness is 200 A. The two upper curves correspond to the electrons
and the two lower to the holes. The curves delineated by “o” are plotted for
zero magnetic flux density and those delineated by “4” are plotted for a 10
tesla magnetic field. The fundamental band gap energy E¢ is assumed to be
zero for clarity.

[3]. Exciton binding energy in a GaAs quantum wire as a function of the wire
width L, for three different cases: (i) without dielectric confinement (dashed
line); (ii) with only first order correction due to the dielectric confinement
(dash-dotted line); and (iii) with complete dielectric confinement (solid line).

In the last case, up to fourth order correction was sufficient for convergence.

The thickness of the wire along the z-direction is 200A.

[4]. Exciton longitudinal radii versus wire width with and without dielectric
confinement. When there is no magnetic field present, the exciton radius
increases monotonically with increasing wire width. The thickness along the

z-direction is 200A.

[5]. Exciton longitudinal radii as a function of a magnetic flux density with
(“+”) and without (“o”) dielectric confinement. The thickness along the

z-direction is 200A.
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[6]. Exciton binding energy versus magnetic field. All parameters are the
same as in Fig. 5. The inset shows exciton binding energy as a function of

the dielectric misfit.

[7]. Exciton radius as a function of the dielectric misfit for two values of the
magnetic field: (i) B=0 tesla (“0”) and (ii) B=10 tesla (“+”). The thickness
along the z-direction is 2004 and the width is 500A.

[8]. Exciton binding energy as a function of the dielectric misfit for two
values of the magnetic field: (i) B=0 tesla (“0”); (ii) B=10 tesla (“+”). The
thickness along the z-direction is 2004 while the width is 500A.

[9]. (a) Biexciton binding energy in a GaAs quantum wire as a function of
magnetic flux density. (b) Biexciton binding energy in a GaAs quantum wire
as a function of wire width. No magnetic field is present. The thickness

along the z-direction is 2004 and the width is 5004 for both cases.

[10. Exciton oscillator strength as a function of wire width with (“+”) and
without (“0”) dielectric confinement. The thickness along the z-direction is

200A.

[11]. Exciton oscillator strength as a function of a magnetic flux density with
(“+”) and without (“0”) dielectric confinement. The thickness along the

2-direction is 2004 and the width is 500A.

[12]. The exciton-biexciton transition oscillator strength as a function of a
magnetic flux density. For the curve delineated by “o” the thickness along
the z-direction is 2004 and the width is 500A. For the curve delineated by

“4” the thickness along the z-direction is 2004 and the width is 700A.
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We have calculated the momentum and energy relaxation rates of hot
electrons in a quantum wire subjected to a magnetic field. These rates
have been determined for both forward (where the electron velocity does
not change sign) and backward (where the electron velocity changes sign)
scattering. A magnetic field suppresses both momentum and energy relax-

. ation rates associated with non-polar acoustic and surface optical phonon
- scattering. For polar acoustic and polar optical phonon scattering, it
suppresses the momentum relaxation rate, but increases the energy re-'
laxatlon rate. The suppression of momentum relaxation rate leads to an
increase in the drift velocity and mobility of ele(‘trons w]uch is beneficial
for electromc dev1ce _applications.

1. Introduction .

It is now well-estabhshed that a magnetic field suppresses back-scattering of
electrons in quantum wires. The field spatially separates oppositely traveling
electron states (“edge-states”) thereby reducing the overlap between their wave
functions and the matrix element for backscattering [1-4]. While this has many
important consequences, perhaps the most noteworthy is the celebrated integral
quantum Hall effect whose origin may lie in this phenomenon [5].

- In this paper, we have calculated the momentum and energy relaxation rates
of electrons in a quantum wire subjected to a magnetic field. Since the mo-
mentum relaxation rate is primarily determined by backscattering (large change
in momentum) as opposed to forward scattering (small change in momentum),
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We have theoretically studied giant dipoles associated with transitions
between magneto-electric subbands in a quantum wire subjected to a trans-
verse magnetic field. The strengths of these dipoles and their resonant fre-
quencies can be varied with the magnetic field which then allows one to tune
the emission wavelength of these transitions. The large magnitude of the
dipole moments also leads to a strong second-harmonic component of the di-
electric susceptibility which can be utilized for non-linear optical applications

such as second-harmonic generation, limiting, mixing, optical switching, etc.
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I. Introduction

Direct intraband transitions between the quantized states (subbands) of
the conduction band in a quantum well is a well-researched topic.! It has
been shown both experimentally and theoretically that such transitions have
very large dipole moments and narrow bandwidths. Strong infrared absorp-
tion associated with transitions between the lowest two electronic subbands
in a GaAs quantum well was observed long ago by a number of experimental
groups?. Recently, population inversion between the second and third sub-
bands of a quantum well has been established unambiguously leading to the
demonstration of the celebrated quantum cascade laser®. The energy sepa-
ration between the subbands in a quantum well or wire can be varied by an
external magnetic field which then allows one to realize a continuously tun-
able laser or light-emitting-device. Moreover, the field can induce forbidden
transitions that make additional frequency ranges accessible, thus permitting
flexible device design.

Another potential use of magnetic field biasing of quantum wells or wires
is in non-linear optics. Non-linear optical properties stem from higher or-
der dielectric susceptibilties. Specifically, the second-order susceptibility x®
is responsible for such phenomena as mixing and second-harmonic genera-
tion. It is well-known that even-order susceptibilities vanish in structures
with inversion symmetry. Consequently, finite second-order susceptibilities
can be obtained in such structures only if the inversion symmetry of the
conduction-band potential is broken either by an external electric field or by
the intentional growth of an asymmetric well. Obviously, the former is the
preferred method since an electric field can be continuously varied which al-

lows one to tune the degree of symmetry-breaking and the magnitude of x(®).



However, this method has a practical shortcoming. An electric field tilts the
potential barriers of the well thereby allowing carriers to escape by tunneling
or thermionic emission. This is especially serious in GaAs/AlGaAs systems
where the barrier height is relatively small. Indeed, it has been pointed out
that the electronic states in a quantum confined system biased by a trans-
verse electric field are never true bound states since the particles can always
lower their energy by escaping from the well. Therefore, these states have a
finite lifetime. An electric field reduces the lifetime drastically and broadens
the transitions.

To overcome this shortcoming, one can adopt magnetostatic biasing. A
magnetic field can break inversion symmetry without tilting potential barri-
ers and promoting carrier escape. A transverse magnetic field applied to a
quantum wire exerts a Lorentz force on an electron moving along the wire.
As a result, its wave function (in any subband) will be skewed towards one
edge of the wire. This skewing does not tilt potential barriers to first order
(the barriers may tilt slightly because of a second-order effect associated with
space-charges and the self-consistent (Hall) electric field). However, it effec-
tively breaks inversion symmetry since it causes a net charge to accumulate
at either edge of the wire (the charges at the two edges have opposite signs as
in the classical Hall effect). This leads to a non-vanishing even-order suscep-
tibility in a symmetric structure. The skewing has another subtle effect. The
degree to which the wave function is skewed is different in different subbands
since an electron has different kinetic energies and hence experiences differ-
ent Lorentz forces in different subbands. As a result, transitions between
subbands whose wave functions have the same parity - which are forbidden

without a magnetic field - are now allowed since the parities are altered by



different amounts in different subbands by the different degrees of skewing.
We should point out that this effect has striking similarity with the quan-
tum confined Lorentz effect (QCLE) previously examined by Balandin and
Bandyopadhyay ®° in the context of interband transitions between conduction
and valence band states rather than intraband transitions in the conduction
band. In that case, the different amount of skewing of the electron and hole
states quenches photoemission. |

This paper is organiZed as follows. In the next section, we describe the
theoretical formulation, followed by results. Finally, in section IV, we present

the conclusions.
II. Theory

We consider a quantum wire as shown in Fig. 1 with a magnetic field
applied along the z direction. The thickness along the z direction is so small
(and consequently the subband separation in energy is so large) that for
the range of photon energies considered, an electron cannot be excited (by
real transition) into a subband which has more than two nodes along the z-
direction. Such a transition will not be accessible in energy. This restriction,
coupled with the fact that a magnetic field does not affect the z-component
of t];e electron wave function, allows us to drop the z-component from further
consideration. The width of the wire along the y-directioﬁ is however large
enough that subbands with more than two nodes along the y-direction are
accessible in energy.

In the framework of the envelope function approximafion (EFA), an elec-
tron wave function can be written as the product of a Bloch wave function,
periodic with the atomic lattice spacing, and an envelope wave function, de-

scribing the nonperiodic behavior. Consequently, the wave function of an
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electron for a given wave vector k along the z-direction, in the nth magne-

toelectric subband, at a magnetic field B can be written as

®,.(z,y,k, B,t) = U,(z,y,k, B)un(z,y, k)e‘jE"(k'B)t/r‘, (1)

where U, (z,y, k, B) is an envelope function, u,(z,y, k) is a Bloch function of |
a conduction band and E,(k, B) is the dispersion relation of the nth magne-
toelectric subband at a flux density B. The Bloch wave functions are assumed
to be s states which is the usual case for semiconductors where J = 1/2 for
the conduction band.

The envelope function can be further decomposed into a plane wave along

the unconfined z direction and confined component along y direction

U, (2,9, k, B) = xa(y, k, B)e?*® (2)
Using the electric dipole approximation, we can write the matrix element

of photoinduced inter-subband transitions within the conduction band as®

dri(k, B) = ¢ [ xs(y, b, BYi - 7xily, b, BYIF [ uj(z,y, K)ui(z,y, K)dQ (3)
where df) is a volume element, 7 is the unit vector along the direction of
the incident photon polarization, ¥ = zd, + yd, is the two-dimensional ra-
dius vector, and subscripts ¢, f stand for initial and final states respectively.
The exponential term of Equation (2) is not present in Eq. (3) since for
photoinduced transitions (ks = k;), the product of the exponential function
and its complex conjugate is exactly unity. The volume overlap of the Bloch
functions is also unity for s-states with the same wave vector. Now, if we
assume that the incident light is polarized along the y-direction so that 7 =

dy, the above equation simplifies to




w/2
dsi(k,B) =e < xflylxi >=e yxs(y, k, B)xi(y, k, B)dy,  (4)
—-W/2

where W is the width of the quantum wire along the y-direction.

One should note here, that if there is no magnetic (or electric) field ap-
plied, the envelope functions y; are just particle-in-box states and the dipole
moment in Eq. (4) is non zero only for the transitions between subband
states of opposite parity. For a symmetric square potential well, these dipole
elements (between any two states n and m) are independent of the wave vec-

tor k and can be found analytically® by evaluating the integral in Equation

(4).

8 . . .
dii =e< xslylxi > = eVVﬁWT_%—Q—)—E, if n and m have opposite parity
= 0, otherwise (5)

However, when a magnetic field is applied, the skewing of the wave functions
changes the integral in Equation (4) and alters the selection rules. Generally,
the skewing causes three effects. First, it makes the dipole moment depend
on the wave vector k (since the degree of skewing depends on k). Second, it
reduces the dipole moment for transitions between states of opposite parity
(since the integral in Equation (4) decreases), and third, it allows forbidden
transitions between states of the same parity (since the integral in Equation
(4) no longer vanishes for states of the same parity).

It is clear from Equation (4) that to calculate the dipole moments in the
presence of a magnetic field, all we need to compute are the wave functions
x#,i(y, k, B) at a given magnetic field B, for given magnetoelectric subbands

f and i, and for a given wave vector k. This is achieved via a numerical (finite
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difference) solution of the Schrédinger equation following the prescription of
ref. [7]. Once this is done, we can calculate the dipole moment in Equation
(4) for any chosen intersubband transition, at any chosen magnetic field and
for any chosen wave vector.

In the limit of high magnetic fields, when the magnetic length I(=
W) << W one can again obtain an analytical expression for the dipole
moment d;;. In this case, the magnetostatic confinement predominates over
electrostatic confinement and the envelope functions x.(y, k, B) can be ap-

proximated by harmonic-oscillator wave functions:
Xn(y, k: B) = X(y — Yk B) = NoHa(o,y — ya)e 3707w (6)

where N, = (a/71/?22n1)}/? is a normalization constant, H,(«,y) is the nth

Hermite polynomial, yx = hk/eB, and

a=\/?=%. ()

In order to evaluate the integral in Eq. (4) analytically, we extend the lim-
its of integration to infinity assuming that the wave function tail is negligible
at the boundaries of the wire (i.e. at y = £W/2). This is a very reason-
able assumption in a high confining magnetic field. The resulting analytical

expression for the dipole moment is
1 .
dii(B)=e < xslylxi> = el(ﬁ—;;—)l/z, ifm=n+1 (8)
= el(g)l/z, ifm=n-—1
= 0, otherwise.
The physical significance of the two analytical limits - B — 0 and B — o

- is obvious. At zero field, the dipole is determined by the width of the

wire dj; ~ eW, and at the high field limit it is determined by the magnetic
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length ds; ~ el. This is what one would expect intuitively. At zero field,
the dipole is confined electrostatically with the wire width being a measure
of this confinement while at high magnetic field, the dipole is confined mag-
netostatically and the magnetic length is the corresponding measure of this

confinement.

II1. Results
A. Intraband dipoles

We now present results of our calculations. The physical parameters
used for the numerical calculations correspond to a GaAs quantum wire with
relative dielectric constant €, = 12.9, and effective masses m, = Q.067m0 and
my, = 0.5m, where m, is the free electron mass. '

In Fig. 2, we show the dependence of the dipole moment d;;(k, B) for
three transitions (el-e2, e2-e3, and el-e3) on the wave vector k¥ when a mag-
netic field of 1 tesla is applied (following usual practice, the transitions are
numbered by the subband indices). The dipoles corresponding to transitions
between states of opposite parity (el-e2 and e2-e3) have maxima at £ = 0
and then decrease with increasing wave vector. This can be easily understood
as follows. At zero wave vector (no translational velocity) these states do not
experience any Lorentz force and hence the wave functions are not skewed.
As the wave vector k increases, the translational velocity and the Lorentz
force experienced increase. Consequently, the envelope wave functions are
skewed more and more and the dipole moment decreases. Real transitions
between states of the same parity are forbidden at zero magnetic field, but
at a finite magnetic field, they are forbidden only at k=0 when there is no
translational velocity and no Lorentz force to skew the wave functions. With

increasing k, the wave functions are increasingly skewed and the dipole mo-
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ment of forbidden transitions increases. In our chosen prototype wire, dej—e3
reaches a maximum of 28 e— A at k = 0.0051 A and then decreases gradually
ultimately reaching zero. This intriguing non-monotonic dependence on k is
explained later on. However, at this point, it is interesting to note that a
fairly large forbidden dipole moment of ~ 30 e-A can be achieved in realistic
structures at a moderate magnetic field of 1 tesla.

Fig. 3 presents the dipole moments for the same transitions as a func-
tion of magnetic flux density. The propagation wave vector k is chosen to
be 0.01/A. At zero magnetic field, a non-vanishing dipole matrix element
occurs only for transitions between states of opposite parity (el-e2, e2-e3)
as expected from Equation (5). This equation also allows us to estimate the
strengths of these zero-field dipoles to be 180 e — A for el-e2 and 195 e — A
for e2-e3 transitions. As we can see from Fig. 3, these values are in excel-
lent agreement with our numerical results. From the analytical expression in
equation (8), we can estimate the strength of the el-e2 dipole to be 66 e — A
at a magnetic flux density of 15 tesla. This number also agrees with our
numerical result. The el-e3 dipole vanishes at both zero field (because of the
spatial symmetry of the particle-in-a-box states) and at high ﬁelcis because
of the symmetry of the Landau states or Hermite polynomials. This behav-
ior is consistent with Equations (5) and (8). Ounly at intermediate fields,
when the wave functions of the subbands are a hybrid between particle-in-
a-box states and Hermite polynomials (and thus “non-symmetric” in space),
is this transition allowed. This immediately tells us that d.3—.; must have
a non-monotonic dependence on the magnetic flux density B and indeed it

does.

A.1 Non-monotonic behavior of dipole moment d.;_.;.




Let us now examine the non-monotonic behavior of des_.; more closely.
This transition is forbidden at zero field since the wave functions of the
first and third subband have the same parity. At low magnetic fields, the
parities are altered by the skewing of the wavefunctions and consequently
de3—e1 1s no longer zero but increases with the magnetic field. It reaches
a maximum of about 30 e-A and then decreases. This later decreases is
related to the following effect. For a fixed wave vector k, a sufficient increase
in the flux density B forces the traversing states (“skipping orbits” or “edge
states”) to condense into closed cyclotron orbits (Landau levels) which are
no longer skewed by the magnetic field to the wire edge since they have no
translational velocity and hence no Lorentz force. While edge states have
a skewed wave function which is not symmetric in space, cyclotron orbits
have a wave function that is symmetric about the orbit center y;. Note that
yr depends only on k and B. Therefore, at a fixed k, the wave functions
of the first and third Landau levels are symmetric about a common center.
Whenever this kind of symmetry holds, d.3_.; vanishes. Therefore, the dipole
moment d3_.; decreases gradually to zero at high magnetic field with the
onset of Landau condensation.

The same physics can be elucidated in a different way by considering the
energy versus wave vector relation is Fig. 4(a) and 4(b) which show the
dispersion of the first and third magneto-electric subbands respectively.

At B = 0, velocity (slope of the curves) at k¥ = 0.01 /A are non-zero for
both the el and e3 subbands. However, the Lorentz force is zero because
B = 0 and hence de;—.s = 0. At B = 5 tesla, the group velocities for the
two subbands are still non-zero and the Lorentz force is finite resulting in

skewing of wave functions and a non-vanishing value of dey_e3. At B = 10
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tesla, the group velocities at k=0.01 /A are zero in both subbands indicating
that the corresponding states have undergone Landau condensation. In this
case, the Lorentz force (for skewing) is again zero and the dipole moment
d.1—e3 vanishes once more. The crucial point to note is that the Lorentz
force e’ x B can vanish in two different ways: (i) B = 0, and (ii) ¥ = 0.
These two conditions are met at zero and very high magnetic fields. As
a result, the dipole moment d.;_.3 exhibits a non-monotonic behavior in
maghetic field. One can ask as to why the same physics does not cause
non-monotonicity in the el-e2 and e2-e3 curves. It is not clear apriori that
non-monotonicity cannot occur (indeed there are regions of inflexion in the
two curves). However, the point to note is that Lanciau condensation causes
recovery of the wave function symmetry (or anti-symmetry), but does not
restore the original zero-field wavefunctions. This is shown in Fig. 5 where
we show the wave functions in el subband at 0 and 10 tesla. Both wave
functions are “symmetric” in space, but they are otherwise vastly different
since the magnétosta,tic confinement squeezes the wave functions binding
them in cyclotron orbits.

The non-monotonicity in the wave vector dependence of d.;_.3 in Fig.
2 has a similar origin. As k is increased, the relative skewing between the
wave functions in el and e3 subbands change non-monotonically causing the
non-monotonicity in this figure.

The process described above is illustrated in Fig. 6 (a) - (c), where we
present wave functions of two electronic states (el and e3) for three values of
magnetic flux density. At zero magnetic field the wave functions are symmet-
ric about the center of the wire and dipole transition de3—.; is forbidden (case

“a”). At low magnetic field the wave functions are skewed to the edge of the
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wire (“edge states” - case “b”) and the spatial symmetry is broken for both
states. Dipole transition des—.; is now allowed. It is important to note here
that the symmetry breaking skewing of the wave functions is caused by the
simultaneous presence of a magnetic field and the electrostatic potential bar-
riers at the edges of the quantum wire. At higher magnetic fields, when the
magnetic length is smaller than the wire width, the electrons do not “feel” the
potential barriers at the edges of the wire as they undergo complete Landau
condensation and execute cylotron motion with radius much smaller than
the width of the wire. In this case, the wave function symmetry is essentially
restored (case “c”) although the wave functions are now symmetric about a
point that is not at the center of the wire. Nonetheless, what is important is
that both wave functions are symmetric about the same point. Conseciuently,
the d.3_.; transition vanishes. Simultaneous presence of both electrostatic
confinement and magnetostatic confinement is therefore necessary for wave
function skewing, formation of edge states and the observation of forbidden

transitions.
B. Second Harmonic Generation

It is well known that in systems with inversion symmetry there can be no
second order nonlinearity.® However, in systems without inversion symmetry,
the lowest order optical nonlinearity is of the second order and is expressed
by

POk, w) = P (w; w1, wz) By (b, w1) Ea(p, w2), 9)

where P is the polarization caused by two electric fields E; and E, that are
associated with the electromagnetic fields of either two frequency components

of the same light beam or two different coherent beams with frequencies w;
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and wave vectors k;. The frequencies and wave vectors obey the energy and

momentum conservation laws

hw =Y +huw;, (10)
i

hE =Y +hk..
i

It is obvious that the third-ranked tensor x{? will vanish in any structure
with inversion symmtery. A quantum confined structure may lack inver-
sion symmetry for two main reasons. (i) the semiconductor material by its
intrinsic chemical and crystalline structure may lack inversion symmetry,?
and this is the case in most III-V, II-VI, and I-VII compounds along certain
crystallographic directions. (ii) the quantum confining potential well may be
asymmetric (e. g. triangular potential well, asymmetric double square well
potential, etc.). In the first case, the asymmetry is related to the intracell
charge asymmetry and is not affected by the the confinement since the latter
extends over several unit cells. In the second case, the asymmetry is arti-
ficially imposed and therefore can be engineered. It clearly depends on the
confining potential and hence an applied electric field can alter the potential
and change the degree of symmetry-breaking.

In the present work we restrict ourselves to the second case and do not
consider intrinsic second order nonlinearities of GaAs which are actually quite
large (the nonlinear susceptibility of bulk GaAs is x\9=3.8 1071 m/V.10)
As mentioned before, we avoid an electric field since it promotes carrier
escape and consider a magnetic field instead. Although a magnetic field does
not affect the potential to first order, the simultaneous action of symmetric
electrostatic potential and an external magnetic field may lead to the uneven

charge distribution along the width (y — azis) of the wire caused by different
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degrees of skewing of the wave functions. Because of this reason, it is possible
to break the inversion symmetry in a symmetric quantum well or wire with
a magnetic field alone. This approach is superior to applying a transverse
electric fields since the latter will tilt the confining potential wells thereby
promoting carrier escape from the well by either tunneling or thermionic
emission.

The large magnitude of the dipole moments associated with otherwise
forbidden transitions between subbands of the same parity and their sensi-
tivity to the biasing magnetic field open up a possibility of second harmonic
generation (SHG) that can be controlled by the magnetic field. In order to
evaluate the magnitude and dependences of SHG on the biasing field and wire

geometry, we calculate the second order susceptibility using the formulal!

@ (o y o VE s dayds.dl,
X#a,@( w""wl’w2) 602h2 ST%;po(a)[(Qba — Wy — WZ)(‘Qca — wz)]7 (11)

where N is concentration (number density) of conduction electrons, A{lop =
AQs(B, W) is the energy spacing between o, 8 subbands which depend on
the applied magnetic field and wire width, dmnn = dmn(B, W) is a dipole ele-
ment calculated using Eq. (4), and w, is defined to be w, = w;+w;. The total
symmetrisation operation Sr indicates that the expression which follows it is
to be summed over all six permutations of the pairs (4, —w,), (&, w1), (8, wa).
Since St involves a summation over all possible permutations, it is clear that
xgp(—-wa; wy;ws) is invariant under any of them. For simplicity, the Fermi
distribution p,(a) was assumed to be unity.

Eq. (11) is an approximation which applies only under the condition that
all of the optical frequencies involved (operational frequencies we,wy,ws) are

removed far enough from the subband transition frequencies. It means that

the medium is assumed to be transparent and loss-free at all the relevant
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optical frequencies. This assumption can be relaxed by the introduction of
transition damping factors into the expression in Eq. (11). In our consid-
eration we are mainly interested in the effects of an applied magnetic field
on the second order susceptibility. Since these effects manifest themselves in
Eq. (11) primarily via the magnetic field dependence of the dipole elements
dmn = dmn(B), we did not include any damping constants and associated.
finite linewidths of the electronic states. One should also note here that the
Eq. (11) is strictly correct only for dilute media. In this case, one can write
x® = Na® with of? being the 2nd-order nonlinear polarization. The above
expression is valid only under moderate excitation.

In Fig. 7, we present normalized values of x(?) as a function of magnetic
field for three different wire widths and a fixed value of the wave vector k
(fixed excitation frequency). The operational frequencies w; = w, are chosen
for a CO; laser. For wide ranges of magnetic flux densities (B < 20 tesla)
and wire widths (1004 < W < 1000A4), these frequencies are removed far
enough from the subband transition frequencies Q.p(B, W). As long as the
latter is true, the x(® dependence on magnetic field is govefned mainly by
dipole elements d,,,. Consequently, the x(® curve for W = 10004 peaks
at the same value of a magnetic flux density (B=0.3 tesla) as the el-e3
dipole curve of Fig. 3. The magnetic flux density at which x(® reaches
its maximum increases. with decreasing wire width. This happens because
it takes a higher magnetic field to condense electronic states into cyclotron
orbits (Landau condensation) when the electrostatic confinement is stronger
(narrower wires).

Fig. 8 shows the dependence of the normalized values of ¥ on wire

width for three different values of a magnetic field and a fixed value of the
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wave vector. For weak magnetic field of 0.3 tesla, the x(* curve increases
monotonically with increasing wire width (case “b” of Fig. 6). This happens
because dp, , is proportional to the wire width W (see Equation 5 which is
valid at zero field). The magnetic field is obviously not strong enough for
the onset of Landau condensation. At a moderate magnetic flux density of 1
tesla, we can observe some saturation features and for a strong magnetic field
of 5 tesla, the curve is non-monotonic, rolling down to almost zero for the wire
width of 1000 A (case “c” of Fig. 6). The physics underlying the difference
in the behaviors of the three curves is essentially the same as that responsible
for the features in Fig. 7. At small values of wire width (W = 170A), there
is an additional peak in the x(® curve. This peak is a manifestation of the
fact that Qg has become comparable to the operational frequencies. At this
point the resonant behavior is strongly suppressed by the near vanishing of
the dipole elements.

In our numerical calculations we have used N= 10" ¢m™3. For this dilute
concentration, high density effects such as screening and bandgap renormal-
ization are not important and Equation (11) is quite valid. In fact, ref. [1]
demonstrated an excellent agreement between theory and experiment with-
out accounting for any high density effect even though the carrier concentra-
tion in that study was N = 5 x 10'"/cm3. Therefore, we believe that high
density effects are not significant in this regime.

The peak value of the second order susceptibility for a wire width of 500
Ais x® = 151077 m/V (the absolute magnitudes of the peak values for
various wire widths are given in the caption of Fig. 7). For comparison, the
nonlinear susceptibility of electric field biased GaAs quantum wells (W=92

A) - calculated theoretically and measured experimentally in ref. [1] - was
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x® =2.4 1078 m/V for an electric field of 36 kV/cm. This shows that rela-
tively weak magnetic fields in quantum wires can produce similar magnitudes
of x(® as rather strong electric fields in quantum wells. Unfortunately, there
is no theoretical or experimental result available for either electric field bi-
ased quantum wires or magnetic field biased quantum wells so that a direct
comparison is not possible. Nonetheless, it is obvious that magnetic field
biased quantum wires provide a very attractive alternative to other means of
producing large x(? values. In fact, the largest value of x(? (obtained at a
magnetic flux density of 2 tesla) in a magnetic-field-biased quantum wire is

three orders of magnitude higher than what can be achieved in bulk GaAs.

IV. Conclusion

We have theoretically studied the giant dipole effect in magnetic-field-
biased semiconductor quantum wires. The dipoles are associated with tran-
sitions between magneto-electric subbands within the conduction band, some
of which are forbidden in the absence of the magnetic field. The resonant
frequencies of these transitions can be tuned by the magnetic field which
allows the realization of externally tunable inter-subband lasers. We have
also studied the possibility of second harmonic generation in a quantum wire
biased with a magnetic field and find a strong second harmonic component

of the susceptibility which has applications in non-linear optics.
Acknowledgement

This work is supported by the US Army Research Office under contracts
DAAHO04-95-1-0586 and DA AH04-95-1-0527.

17




REFERENCES

[1]. M.M. Fejer, S.J.B. Yoo7 R.L.Byer, A. Harwit, J.S. Harris, Phys. Rev.
Lett., 62, 1041 (1989) and references therein; L. C. West and S. J. Eglash,
Appl. Phys. Lett., 46, 1156 (1985); for an overview of current work on
intersubband transitions see H.C. Liu, B.F. Levine and S.Y. Anderson eds.,
Quantum Well Intersubband Transition Physics and Devices (NATO ASI
Series E270), (Dordrecht: Academic, 1994).

[2]. A. Sa’ar, I. Grave, N. Kuze, and Yariv in Nonlinear Optics: Materials,
Phenomena and Devices, 113 (1990); B.F. Levine, R.J. Malik, J. Walker,
K.K. Choi, C.G. Bethea, D.A. Kleinman, and J.M. Vandenberg, Appl. Phys.
Lett., 50, 273 (1987).

[3]. See, for example, Manfred Helm, Semicond. Sci. Technol., 10, 557
(1995); J. Faust, et. al., Appl. Phys. Lett., 64, 1144 (1994).

[4]. E.J. Austin and M. Jaros, Phys. Rev. B 31, 5569 (1985).

[5]. A. Balandin and S. Bandyopadhyay, J. Appl. Phys., 77, 5924 (1995); A.
Balandin, Ph.D. dissertation, University of Notre Dame, 1996.

[6]. Claude Weisbuch and Borge Vinter, Quantum Semiconductor Structures:

Fundamentals and Applications, (Academic Press, Boston, 1991).
[7] S. Chaudhuri and S. Bandyopadhyay, J. Appl. Phys., 71, 3027 (1992).

[8] see for example J.M. Hvam in Nonlinear Spectroscopy of Solids: Advances
and Applications, Edited by B. Di Bartolo and B. Bowlby (Plenum Press,
New York, 1994), pp. 91-149.

[9] This lack of symmetry is due to the transfer of a valency charge from one
atom to the other bond-forming atom and resultant uneven charge distribu-

tion along the bond axis.

18



[10] Handbook of Lasers, Edited by R.J. Pressley (Chemical Rubber Co.,
Cleveland, 1971), p. 504.

[11] see for example P.N. Butcher, D. Cotter, The Elements of Nonlinear
Optics, (Cambridge University Press, 1990); A. Yariv, Quantum Electron-
ics, (Wiley, N.Y., 1989); or Y.R. Shen, The Principles of Nonlinear Optics,
(Wiley, N.Y., 1984).

19



FIGURE CAPTIONS

[1] An electron waveguide (quantum wire) subjected to a magnetic field along

the z axis. The width of the wire is much larger than the thicknes.

[2] Dipole moments for various inter-subband transitions as functions of the
propagating wave vector k£ for a magnetic flux density of 1 tesla. At zero
translational velocity (k = 0) the dipole of the transition el-e3 vanishes.

The GaAs quantum wire is 1000 A wide.

[3] The dipoles of three inter-subband transitions as functions of the applied
magnetic field. The dipole d.;_.3 peaks at a magnetic flux density of 0.3

tesla. The wire width is the same as that in Fig. 2.

[4] Energy vs. wave vector relation of electrons in (a) first subband, and (b)
third subband of a 1000 A wide quantum wire. The wave vector is along
the free propagation direction. The results are shown for three values of a

magnetic field. The energy is calculated from the bulk conduction band edge.

[5] The y component of the electron envelope function for the first subband

at a magnetic flux density of 0 and 10 tesla.

[6] The y component of the electron envelope functions for the first and
third electronic subbands. The results are shown for the cases when (a) no
magnetic field is present, (b) when a weak magnetic field is present and,

finally, (c) when a strong magnetic field is present.

[7] Second order susceptibility as a function of the biasing magnetic field.
The peak values of the susceptibility are 13.2 10~" m/V, 1.5 10~7 m/V and
3 1078 m/V for wire widths of 1000 A, 500 A and 300 A respectively. The

results are shown for the wave vector k=0.01 / A (fixed excitation frequency).
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[8] Second order susceptibility as a function of the wire width for three values
of the biasing magnetic field. The maximum values of the x(?) curves are the
same as in Fig. 7. The narrow peaks at a wire width of ~ 200 A are due to
resonances occuring when éither Qe = w1 +w; or Oy = ws (see Equation 11

in the text).
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Abstract

In this paper, we have calculated the refractive index of a quantum
wire waveguide in the vicinity of an exciton-polariton resonance. The
critical values of the exciton decay parameter, defining the onset of
polariton transport regime, and the associated temperature were also
found using the combination of a variational approach and a numeri-
cal solution. Our theoretical model allows us to include the effects of
an external magnetic field. The results show that confinement of exci-
tons to one dimension and the simultaneous application of a magnetic
field may lead to the extension of the temperature and spatial limits
of polariton transport. The magnetic field can be used to shift refrac-
tive index peaks in frequency thus providing a much-desired tuning
capability.

I. Introduction

Exciton dynamics in semiconductor quantum confined structures has al-
ways been attractive because of its potential applications in optoelectronics.
One of the most interesting phenomenon related to excitons in such struc-
tures is the formation of exciton-polaritons. In the spectral region around an
exciton resonance, a photon, absorbed by a semiconductor, linearly couples
with an exciton to create a polariton. Exciton polaritons have been studied

extensively in quantum wells by measuring photoluminescence and reflection,




as well as by picosecond time-of-flight measurements.’? It was shown that
polaritons are much more stable in quantum wells than in bulk,® and they are
expected to be even more stable in quantum wires since the exciton binding
energy and oscillator strength tend to increase with reducing dimensionality.*

The formation of polaritons modifies the transport of light through the
medium. In particular, the medium of propagation becomes substantially
more transparent™® and the group velocity of light propagating along the
waveguide approaches the speed of light in vacuum.” At the same time, there
is a possibility of controlling polariton transport with an external field. In this
paper, we argue that a relatively weak magnetic field is particularly attractive
for tuning polariton transport because it increases exciton oscillator strength
thus eztending the polariton regime of energy transfer, while an electric field
would decrease exciton oscillator strength and quench polariton transport.

Although existing theoretical models recognize modification of polariton
transport due to spatial confinement, they account for it by using heuristi-
cally peaked values for exciton oscillator strength and binding energy. The
authors are not aware of any attempts to include an external field, particu-
larly magnetic, into consideration.

In this work, we present a model for calculating the exciton-polariton crit-
ical decay parameter and the refractive index of a quantum wire around a
polariton resonance in the presence of a magnetic field. The decay parameter
determines the regime of polariton transport. To our knowledge, this is the
first study where the exciton longitudinal-transverse (LT) splitting and ex-
citon resonance frequency - which define the polariton dispersion - are found
in a non-ad-hoc manner using the combination of a variational approach and
an exact numerical solution of the Schrédinger equation. The calculations
are performed for a quantum wire with finite lateral dimensions subjected to
a magnetic field.

The rest of the paper is organized as follows. In section II, we establish the

polariton dispersion relation used throughout the model; section III presents



the results of calculation of the LT splitting and oscillator strength of the
exciton transition in a quantum wire subjected to a magnetic field; in section
IV, we examine the exciton critical damping for the onset of the polariton
transport regime and calculate refractive index of the wire in the vicinity of

exciton resonance. Conclusions are given in section V of the paper.
II. Polariton dispersion

We consider an array of parallel GaAs quantum wires of rectangular cross
section separated by infinite potential barriers so that wavefunctions of the
excitons from different wires do not overlap. In such a structure, excitons
are free to move along the wire axes but are confined in perpendicular direc-
tions. The lateral dimension of each wire is comparable to the exciton Bohr
radius. The cladding material is assumed to have a similar refractive index
so that we can ignore image charges of the exciton and associated dielectric
confinement effects. Under these conditions, the dispersion relation of the
exciton polaritons can be determined for each separate wire. The multiple
wire structure in this case merely forms a waveguide structure analogous to
that considered in Ref. [8].

Most theoretical models for exciton polaritons (both in bulk material
and nanostructures) embody a semi-classical approéch and utilize the disper-
sion relation of a polariton derived for a single electric-dipole-active exciton
resonance.>® Here, we adopt the same philosophy and consider electromag-
netic waves propagating through an array of quantum wires with a wavevec-
tor k parallel to the wire axis. This choice of the direction of propagation
allows for a spatial dispersion of the light waves. In the opposite case of light
propagating normal to the wire axis, the translational motion of excitons is
suppressed and the spatial dispersion effects do not occur.

In the long-wave approximation (kL, , < 1, where L, , are the wire lateral
dimensions) the array interacts with light waves like an effective medium, and

the dielectric function in the vicinity of an isolated exciton resonance can be



written as® A
2€,wrTWw,

w2 — w? + hk?w,/M — iwy’ (1)

where ¢, is the background dielectric constant (contribution made by other

e(w,k) =€, +

resonances), w is the frequency of light, wyr is the longitudinal-transverse
splitting of the exciton related to its oscillator strength, w, is the exciton

resonant frequency at £k = 0, M = m, + m; is the translational mass

. of an exciton, and I' = A7y is the exciton damping parameter. Here we

have assumed parabolic wavevector dependence of the exciton frequency
Fuw(k) = hw, + h’k?/2M, with the caveat that this is valid only in weak
magnetic fields when the magnetic length [, (= \/le—?) is much larger than
the transverse dimensions of the wire. In the formula above, the quanti-
ties wrr = wrr(Ly,z, B) and w, = w,(Ly ;, B) are the functions of the wire
lateral dimensions and a magnetic field. The exciton damping constant is
considered to be independent of the magnetic field since it is known that
energy-avefaged phonon-interaction rates in quantum wires are not terribly
sensitive to a magnetic field. In any case, Eq. (1) is a good approximation
when the magnetic field applied to the system is relatively weak: I, > L, ,.
This equation relates w and &k and is the sought-after dispersion relation of
a polariton.

Before we can go further into polariton transport properties, we have to
calculate wyr and w, as the functions of wire dimensions L, , and a magnetic

flux density B. This is discussed in the next section.
III. Longitudinal-transverse splitting

Let us assume that the infinite potential barriers of the quantum wire are
located at y = +L,/2 and z = +L,/2. A magnetic field is applied along
the z-direction (see inset to Fig. 1). To simplify the calculations, we assume
strong quantum confinement of the carriers which enables us to factorize an
exciton wavefunction into the product of electron and hole wave functions.

Moreover, we limit our consideration to systems with relatively large dielec-




tric constants so that all Coulomb interactions are strongly screened. This
assumption, together with the hard-wall boundary condition, allows a co-
ordinate separation. Consequently, the wave function of an exciton in the
vicinity of subband bottom (with center-of-mass momentum Py = 0) is given
byt
U = U(Z, Ye, Yn» Ze, ) = Gt(T, M) Pe(Yer 2e)Yn (Yn, 2h) (2)
= g¢(2, 1) be(Ye) Dnyn) Xe(ze) Xn(21),

where g;(z,n) is chosen to be the Gaussian-type “orbital” function:

L 2014 ~(a/mp?
gt(xyn)=m(;)/e (=/m) (3)

in which 7 is a variational parameter which defines the exciton size (“longitu-
dinal length”), and z is the relative electron-hole coordinate. The subscripts
in Zeh, Ye,h, Ze,n identify them as electron or hole coordinates. The variables
Xe,h(2Ze,n) are the z-components of the wave functions which are not affected
by the magnetic field. They are given by particle-in-a-box states. The elec-
tron and hole wave functions along the y direction, @en(Yen), are to be cal-
culated numerically when a magnetic field is present. This is done by solving
the one-particle Schrédinger equation using a finite difference method.!°

In order to find an exciton “length” 7, we use the variational approach of
minimizing the energy given by < ¥|HX|¥ >, where the exciton Hamiltonian
is
Hx - Py S b R ) @

2M - 2u 2m, 2my,

e2B?
2

eB(y. — 5 )
v BUW By By, + g + S (0 me + 32 )

M
+ UC(xea ThyYe;s Yhy Zes Zh,) + US(ye) Yhs Ze, Zh.)-
Here we have chosen the Landau gauge A = (—By,0,0). The quanti-
ties me,my, are the effective masses of electrons and holes respectively,
1/u(= 1/m, + 1/my;) is the exciton’s reduced mass, Uc(Ze, Th, Ye, Yh, Ze; 21)
is the electron-hole Coulomb interaction term, Us(Ye, Yn, e, 2) is the spa-

tial confinement potentials for electrons and holes along y and z directions.
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Details of the variational procedure, calculations of 7, etc., can be found in
some of our earlier work.*
We can find the oscillator strength of the exciton transition o, and the

LT splitting by evaluating the momentum matrix element which is given as

1
M = 5= [ dhgi(ar, )Mo (R, (5)

where M, is the valence-band to conduction-band dipole matrix element.
and k is again the wave vector along the unconfined direction of the wire.
When the k dependence of M., is neglected, Eq. (5) reduces to the simple
expression

|MG 12 = |Me|*|ge(z = 0,m)]". (6)

The exciton oscillator strength per unit length can be written as follows

2

— | MEP. (7

ao=

Here Aw, = Eg + E¢1 + Epp1 — min< \II|I?[ |¥ > is the exciton ground state
energy, F¢ is the fundamental bandgap of the bulk material, E.;, Exn1 are
the lowest electron and the highest heavy hole magneto-electric subband
bottom energies in a quantum wire measured from the bottom of the bulk
conduction band and the top of the bulk valence band, and m, is the free

electron mass. The exciton LT splitting 2+ = fiwrr can now be written as

2mohiw, 4T
hwpr = = | M. (8)
€o Mo€y

In Fig. 1 we present the LT splitting calculated for different wire dimen-
sions and magnetic flux densities. The physical parameters used for the calcu-
lations correspond to a GaAs quantum wire with € = 12.9¢,, Eg = 1.515€V,
me = 0.067m,, my = 0.5m,, where m, is free electron mass and ¢, is electri-
cal permitivitty of free space, E,;, Epp1 are calculated numerically following
the prescriptions of Refs. [10, 11]. One can see from the figure, that the ex-
citon splitting is sensitive to the spatial confinement and increases by about
60 % when the wire width decreases from 500 A to 50 A. A magnetic field
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Figure 1: Longitudinal-transverse splitting of an exciton as a function of
wire width (left pannel); and as a function of magnetic flux density for a
500 A wide wire (right panel). For both panels, the upper and lower curves
correspond to 200 A and 5004 thick wires, respectively.

also increases the splitting (and oscillator strength) thus making the exciton

polaritons more stable.
IV. Refractive index and decay parameter

The experimentally observed higher transparency of the medium of prop-
agation in polariton transport regime has been attributed to certain features
of the dispersion law for excitonic polaritons and to the fact that polariton
transport by itself cannot cause true absorption. In order for absorption to
occur, polaritons have to be scattered inelastically, e.g., by phonons. The on-

set of polariton transport through some structure is governed by the exciton
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polariton coherence length related to the exciton decay parameter I' = A~.
It has been shown, both experimentally and theoretically, that there exists
a critical value of the exciton decay parameter, I'c, which corresponds to a
change in the nature of absorption.5® Here we intend to examine the influence
of spatial confinement and a magnetic field on this parameter and calculate
the refractive index of a quantum wire in the polariton regime.

Confining ourselves to the TE waves relevant to light propagation in the

medium, we can write polariton dispersion in the following form

21.2
(w0, k) = cw—’z = . )

Combining this equation with Eq. (1), and after some algebra, we obtain

Fwow?
Mc?

hwow?
Mc?

In? =€, (w2 ~w? —iyw+2wrrw,) = 0. (10)

n*+(w2-w?—iyw—e, ;

This equation can be solved for two sets of the refractive indices, n; and ns,
corresponding to different transverse polariton branches. It also follows from

Eq. (10) that if the damping parameter I' becomes larger than the critical

)
T.=T¢(L,., B) = 2hw0~/—63’w—‘:§$, (11)

then orily one light wave mode can propagate in the medium, since there is

value

only one real solution for nn. This is the boundary of the polariton propaga-
tion regime. The critical value comes about because of the term fik*w,/M
associated with spatial dispersion effects. The physical importance of the
critical damping can be illustrated by the following example. It was shown®
that when the damping exceeds the critical value, the integral absorption is
independent of I' and proportional to the oscillator strength of transitions
(non-polariton regime). When T < I'., the integral absorption depends on I
linearly, and decreases with decreasing damping.

Using the results from the previous section, we can calculate I'; for dif-
ferent values of wire widths and magnetic field. In Fig. 2 we present the

critical exciton damping (decay) parameter as a function of wire width. It is
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Figure 2: The critical exciton decay parameter (damping) as a function of
wire width. The upper and lower curves correspond to the thickness along
the z-direction of 200 A and 300 A, respectively.

normalized by the value of the decay parameter of a very wide wire (L,=700
A) which is wide enough to be approaching the 2D limit. For this wide
wire, I'; & 1.01 meV. Combining Egs. (7, 8, 11) we can also estimate the
magnetic field dependence of the critical decay parameter using the formula
I'e(B)/T(0) = (w,,(B)/wo(O))\/wLT(B)/wLT(O). Although not shown here,

the magnetic field dependence of the critical parameter is weak; it increases

only 5% at a magnetic flux density of 5 tesla. The strong dependence of the
critical damping on the wire width may lead to a pronounced modification of
the integral (total) absorption of systems consisting of a number of narrow
quantum wires.

We can now find a temperature which corresponds to the critical damp-
ing from the relation ' = T', + [ps(T;), where T, is the damping associ-
ated with the impurity and other temperature-independent elastic scatter-
ing, while I';5(T,) represents interactions with acoustic and optical phonons.
By increasing I'; one can increase T, which defines the onset of polariton

transport and, as a consequence, higher transparency.



Since there is no data available on quantum wires, we assume that the
half-width at half maximum (HWHM) of the exciton resonance in a quantum
wire is the same as in a 200 A thick GaAs/AlGaAs quantum well. Using the

approximation of Ref [11] we may write for our case (energy units are meV)
T, =T} 4 0.00147T, + 4.0(e#/F5Te — 1)~ 4 Ty e~ Bo/keTe) (12)

where Awpr, = 36 meV is a longitudinal optical phonon energy, kg is the
Boltzman constant, Fp = 10 meV is the everage binding energy for donor
impurities in GaAs, I'ymp, = 0.75 meV is a linewidth due to fully ionized
impurity scattering, I'}' = 0.45 meV is the linewidth due to inhomogeneous

fluctuations of the wire thickness. The values chosen for the various param-

‘eters are typical of experimental systems reported in the literature.

Table I. Critical temperature vs. wire width

L,, (A) 500 300 100
T.,(meV) | 1.09 1.16 | 1.45
T., (K) 118 138 169

Solving Eq. (12) for the temperature T, for each value of I'c(L, ,, B), we
are able to obtain the dependence of the critical temperature on the wire
width. The thickness of the wire, L,, was fixed at 200A for this calculation.
As one can see from Table I, that the critical temperature T, that defines the
onset of polariton transport, can be controlled over a wide range by changing
the wire width L,.

Now let us assume that I' < I'; (exciton polariton regime) and find the
refractive index of the quantum wire in the vicinity of polariton resonance.
In order to do this, we make use of Pekar’s additional boundary condition
(total polarization is zero at the boundary) and write the effective refractive
index as

s 13
N1 -+ ne ( )

In Fig. 3, we present the real (upper panel) and imaginary (lower panel)

parts of the refractive index of a quantum wire with thickness 200 A and
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Figure 3: The refractive index of the wire in the vicinity of exciton resonance.
The solid, dashed and dash-dotted curves correspond to a 0, 1, and 5 tesla
magnetic flux density, respectively.

width 300 A. An external transverse magnetic field is applied along the
thickness. The decay parameter is chosen to be I' = 1meV which is less
than I'; for the given wire dimensions. As one can see from the figure, the
maximum of the real part of the refractive index is as large as 4.97 at zero
field and 5.04 at 5 tesla magnetic field. It is about 1.4 times larger than

that of the bulk material. The refractive index attains its maximum value

at a photon energy slightly lower than the resonance energy hwo(Ly,z,B)’

at any given magnetic field B. The minimum value of the refractive index,
which is 1.66 for zero field and 1.59 for 5 tesla, is located at a frequency of
Wo(Ly,z, B) +wrr(Ly,z, B). It is interesting to note that efficient waveguiding
can be achieved in the spectral range where the real part of the refractive
index increases. However, in this region, the imaginary part of the refractive

index (extinction coefficient) also peaks and this increases the transmission
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loss. The mitigating factor in all this is that the two peaks do not occur at
exactly the same frequency so that an optimal region for optical waveguiding
exists.

A magnetic field of 5 tesla blue-shifts the refractive index peak by 2 meV.
According to Ref. [13], approximately the same magnitude of an opposite
red-shift can be achieved by applying an electric field of about 4x10* V/cm.
However, the electric field leads to a 15-20 % increase in exciton radius and a
concomitant decrease in the binding energy. This, in turn, causes a decrease
in exciton LT splitting and makes exciton polaritons less stable. Note that
while an electric field will tend to ionize an exciton by pulling the electron
and hole apart, a magnetic field has the opposite effect. It squeezes the
electron and hole even tighter together and increases the binding energy.
Therefore, the magnetic field can be used to advantage in this context since
it shifts the peaks in frequency while actually increasing polariton stability.
This frequency tuning capability, acquired without a penalty in polariton

stability, is obviously very attractive and has device applications.
VI. Conclusions

In this paper, we have calculated the refractive index of a quantum wire
waveguide in the vicinity of polariton resonance. The critical values of the
exciton decay parameter and associated temperature were also found taking
into account the effects of spatial confinement and an external magnetic
field. Our results show that confinement of excitons to one dimension and
the application of a magnetic field may lead to the extension of temperature
and spatial limits of polariton transport. The magnetic field can be used to
shift refractive index peaks in frequency - without compromising polariton

stability - thus providing a much-desired tuning capability.
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Abstract

We have theoretically studied non-linear frequency conversion in
a semiconductor quantum wire biased with a magnetic field. In these
systems, efficient second harmonic generation occurs as a result of
the large value of the second-order dielectric susceptibility x(?) aris-
ing from dipole transitions between magneto-electric subbands. The
magnitude and peak frequency of x(?, as well as the absorption and
refractive index associated with x(2), can be tuned with the magnetic
field. This allows one to achieve low insertion loss and efficient phase
matching by manipulating the absorption and refractive index with a
magnetic field.

I. Introduction

Most ordinary solids are not efficient frequency converters because they
exhibit extremely small even-order dielectric susceptibilties. Ideally, even-
order susceptibilities vanish in solids with inversion symmetry.® Conse-
quently, a semiconductor structure can exhibit a large value of the second
order susceptibility x(® only if the inversion symmetry of the conduction-
band potential is broken artificially either by an external electric field, or by
the intentional growth of an asymmetric structure. Obviously, the former is

the preferred method since an electric field can be varied continuously and



this allows one to tune the degree of symmetry-breaking and the magnitude
of x(3. However, an electric field has a practical shortcoming. In a quantum
confined structure, it tilts the potential barriers confining the photogener-
ated carriers. As a result, carriers can escape by tunneling or thermionic
emission and this is especially serious in GaAs/AlGaAs systems where the
barrier height is relatively small. Indeed, it has been pointed out that the
electronic states in a quantum confined system biased by a transverse elec-
tric field are never true bound states since the particles can always lower
their energy by escaping from the well>. Consequently, optical transitions
(and their higher order harmonics) associated with these states have incon-
veniently large linewidths and small oscillator strengths.

Recéntly, we proposed magnetostatic biasing as an attractive alternative
to mitigate this problem.®> We showed that a magnetic field can break in-
version symmetry in a quantum wire without tilting potential barriers. A
transverse magnetic field, applied to a wire, exerts a Lorentz force on an
electron moving along the length. As a result, its wave function (in any
magneto-electric subband) will be skewed towards one edge of the wire. This
skewing does not tilt potential barriers to first order (the barriers may tilt
slightly because of a second-order effect associated with space-charges and
the self-consistent (Hall) electric field). However, it effectively breaks in-
version symmetry since it causes net charges to accumulate at either edge
of the wire. This leads to a non-vanishing even-order susceptibility in an
otherwise symmetric structure. The skewing has another subtle effect. The
degree to which the wave function is skewed is different in different subbands
since an electron has different kinetic energies (and hence experiences differ-
ent Lorentz forces) in different subbands. As a result, transitions between
subbands whose wave functions have the same parity - which are forbidden
without a magnetic field - are now allowed since the parities are altered by
different amounts in different subbands. This effect has some similarity with

the quantum confined Lorentz effect (QCLE) previously examined by us* in




the context of interband transitions between conduction and valence band
states.

In this paper, we first calculate the second-order susceptibility x® in a
symmetric quantum wire whose inversion symmetry (along the width) has
been broken with a magnetic field. We restrict ourselves to narrow GaAs
wires with a width of about 150A4. The energy spacing between the first and
second subband is AE;s =~ 72 meV. This choice of the wire dimension puts
the resonant frequency (for transitions between the lowest subbands) in the
mid-infrared spectral region. The wavelength of the second harmonic compo-
nent of this transition is about 8.6 ym. Here we will be mainly interested in
x? arising from resonant and near-resonant inter-subband transitions which
are governed by the interplay of dipoles and resonant excitations. In con-
trast, Ref. [3] focussed on the off-resonance regime which was governed solely
by the dipoles. We will also calculate absorption and refractive index in the
frequency region of interest for both pump and second harmonic frequencies
and show how they can be manipulated with an external magnetic field to
realize low insertion loss and efficient phase matching.

The rest of the paper is organized as follows. In the next section, we
describe the theoretical formulation, followed by results. Finally, in section

IV, we present the conclusions.
I1. Theory

We consider a generic GaAs quantum wire (as shown in the inset of Fig.
1) with a magnetic field applied along the z direction. The thickness along
the z direction is so small (and consequently the subband separation in energy
in this direction is so large) that for the range of photon energies considered,
an electron cannot be excited (by real transition) into a subband which has
more than two nodes along the z-direction. In other words, such a transition
will not be accessible in energy. This restriction, coupled with the fact that a
magnetic field does not affect the z-component of the electron wave function,

allows us to drop the z-component from further consideration. The width
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of the wire along the y-direction is however large enough (W = 1504) that
subbands with more than two nodes along the y-direction are accessible in
energy.

In systems without inversion symmetry, the lowest order optical nonlin-

earity is of the second order and is expressed by
P—(’2)(E’ U)) - X(z) (U), wi, w?)E-;l (k_iy wl)E;(k;) w2)) (1)

where P is the polarization caused by two electric fields E; and E, that
are associated with the electromagnetic fields of either two frequency compo-
nents of the same light beam or two different coherent beams with frequencies
w; and wave vectors IE; It is well known that the third-ranked tensor x(
will vanish in any structure with inversion symmetry. A quantum confined
structure may lack inversion symmetry for two main reasons. (i) the semi-
conductor material by its intrinsic chemical and crystalline structure may
lack inversion symmetry,® and this is the case in most III-V, II-VI, and I-
VII compounds along certain crystallographic directions, or (ii) the quantuin
confining potential well may be asymmetric (e. g. triangular potential well,
asymmetric double square well potential, etc.). In the first case, the asym-
metry is related to the intracell charge asymmetry and is not affected by the
confinement since the latter extends over several unit cells. In the second
case, the asymmetry is artificially imposed and therefore can be engineered.
It clearly depends on the confining potential. Insofar as an applied electric
field can alter the potential, it can change the degree of symmetry-breaking
and hence modulate x®.

In the present work we restrict ourselves to the second case and do not
consider intrinsic second order nonlinearities which can be quite large in some
materials (the nonlinear susceptibility of bulk GaAs is x{2=3.8 10-10 m/V).5
As mentioned before, we avoid the use of a symmetry-breaking electric field
since it promotes carrier escape. Instead, we consider a magnetic field. Al-
though a magnetic field does not directly affect the potential, it leads to an

uneven charge distribution along the width (y — azis) of the wire because of
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the different degrees of skewing of the wave functions in different magneto-
electric subbands. This has the effect of breaking inversion symmetry.

As mentioned before, a magnetic field induces forbidden transitions be-
tween subbands of the same parity. The large magnitude of the dipoles
associated with these transitions and their extreme sensitivity to the field
open up the possibility of controllable second harmonic generation (SHG)
that can be manipulated by the magnetic field. In order to evaluate the
magnitude and dependence of SHG on the biasing field and wire geometry,

we calculate the second order susceptibility using the formulal

d cdca
b —, (2)

(2)
X7 (2w w;w) h2 TZ Qba—w_z7)(Qca_2w—z7)

abc

where NV is concentration (number density) of conduction electrons, 7 is
a damping factor associated with elastic and inelastic scattering, A2, =
Q%o (B, W, k) is the energy spacing between the b-th and a-th magnetoelec-
tric subbands which depends on the applied magnetic field, wire width and
electron wave vector and d,, = dnn(B, W, k) is a dipole element of tran-
sitions between different subbands. The total symmetrisation operation Sy
indicates that the expression which follows is to be summed over all permuta-
tions of the pairs (g, 2w), (o, w), (8, w). Since Sy involves a summation over
all possible permutations, it is clear that xyaﬂ(2w w;w) is invariant under
any of them.

In order to calculate dipole elements dmn, (B, W), we proceed as in Ref. [3].
Under the electric dipole approximation, the matrix element of photoinduced

inter-subband transitions within the conduction band is given by’

df,i(k7B) = e/Xf(y’kaB)ﬁ * FXi(ya k) B)dF/U}(.’E,y, k)ui(xvy’ k)dQ (3)

where dfQ is a volume element, 7 is the unit vector along the direction of the
incident photon polarization, ¥ = zd; + yd, is the two-dimensional radius
vector, and subscripts %, f stand for initial and final states respectively. Now,

if we assume that the incident light is polarized along the y-direction so that




= the above equation simplifies to

w/2
dsi(k,B) = e < xflylxi >=e yxs(v, k, B)xi(y, k, B)dy,  (4)
w/2

where W is the width of the quantum wire along the y-direction. One should
note here, that if there is no magnetic (or electric) field applied, the envelope
functions y; are just particle-in-box states and the dipole moment in Eq. (4)
is non zero only for the transitions between subband states of opposite parity.
However, this is obviously not the case when a magnetic field is present. It
is clear from Eq. (4) that to calculate the dipole moments in the presence of
a magnetic field, all we need to compute are the wave functions x5y, k, B)
at a given magnetic field B, for given magnetoelectric subbands f and i, and
for a given wave vector k. This is achieved via a numerical (finite difference)

solution of the Schrédinger equation for the y-component of the wavefunction

5 (Qy) = ™ Bx(y) - ( )2x(y)+2l%kX(y)“k2X(y) =0 @

with [ being the magnetic length given by | = (/i/eB, assuming hardwall

boundary conditions

x(y=W/2)=x(y=-W/2)=0 (6)

and following the prescription of Ref. [8]. Once this is done, we can calculate
the dipole moment in Eq. (4) for any chosen intersubband transition, at any
chosen magnetic field and for any chosen wave vector.

The absorption of both the fundamental frequency (pump) and its second-
order harmonic is very important when considering frequency conversion with
low insertion loss. In general, it is desirable to have large absorption coef-
ficient a(w) for the pump frequency and small ¢(2w) for the converted fre-
quency so that the latter is not re-absorbed to cause large insertion loss. In
order to obtain the absorption coeflicients in the whole range of frequencies
and for different values of a magnetic flux density, we need to calculate the
first-order susceptibility as follows

XO(w) = N 5> ()
eeoht 55 Qg — w — iy’

(7




where we have used the same notation as in Eq. (2). The imaginary part of
xW(w) is related to the absorption coefficient while the real part is related

to the refractive index.
II. Results

We now present results of our calculations. The physical parameters used
for the numerical calculations are relevant for a GaAds quantum wire with
relative dielectric constant €, = 12.9, and effective masses m, = 0.067m, and

my, = 0.5m, where m, is the free electron mass.
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Figure 1: The dipoles of three inter-subband transitions as functions of the
applied magnetic field. The induced dipole d.;_.3 peaks at a magnetic flux
density of 5.3 tesla.

Fig. 1 presents the dipole moments for the lowest intraband transitions as
a function of magnetic flux density. At zero magnetic field, a non-vanishing
dipole matrix element occurs only for transitions between states of opposite

parity (el-e2, e2-e3) as expected from Eq. (4). Transition dipole de3_e
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has a non-monotonic dependence on the magnetic field. This transition is

forbidden at zero field since the wave functions of the first and third subband
have the same parity. At low and moderate magnetic fields, the parities are
altered by the skewing of the wavefunctions. The skewing effect of the wave
functions of the first and the third subbands is shown in Fig. 2 (top). Its
degree depends on a subband number, which causes a breaking of inverion
symmetry and, consequently, non-zero value of dipole matrix element de3—e1

for otherwise forbidden transition.
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Figure 2: (Top left and right). Skewing of the wave functions of the first
and third subbands in a magnetic field. The left panel corresponds to zero
magnetic flux density and the wave functions are particle-in-a-box states.
The right panel corresponds to a flux density of 3 tesla and the wave functions
are those of "edge states”. (Bottom left and right). The energy spacing
Fifdn between the mth and nth subbands vs. wave vector k at a magnetic
flux density B=1 tesla (left) and B=3 tesla, (right). The lowest curve (at
k=0) corresponds to el-e2, the intermediate curve to e2-e3, and the highest
to el-e3.

The dipole moment reaches a maximum of about 6 e-A and then de-
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creases. This later decrease is related to the following effect. For some fixed
wave vector k (electron velocity), a sufficient increase in the flux density B
forces the traversing states (“skipping orbits” or “edge states”) to condense
into closed cyclotron orbits (Landau levels) which are no longer skewed by
the magnetic field to the wire edge since they have no translational velocity
and hence experience no Lorentz force. While edge states have a skewed
wave function which is not symmetric in space, cyclotron orbits have a wave
function that is symmetric about the orbit center. Note that the orbit cen-
ter’s coordinates depend only on k and B. Therefore, at a fixed k, the wave
functions of the first and third Landau levels are symmetric about a common
center. Whenever this kind of symmetry holds, de3—.; vanishes. Therefore,
the dipole moment d.3_.; decreases gradually to zero at high magnetic field -
with the onset of Landau condensation (5 tesla for this wire dimensions).
In Fig. 3, we plot the absolute values of ¥ as a function of photon
energy for two different values of the magnetic field. In our numerical cal-
culations we have used a dilute carrier concentration of N=10'7 ¢m~3 which
allows us to neglect high density effects such as screening and bandgap renor-
malization. Both susceptibility curves have pronounced three-peak resonant
structure which corresponds to two one-photon transitions el-e2 (at 72 meV)
and e2-e3 (at 124 meV) and one two-photon transition el-e3 (at 100 meV)
between magneto-electric subbands. These three peaks have different broad-
enings because the sum in Eq. (2) represents an integral effect of all direct
transitions with different values of electron wave vector k and because of the
complex dependence of the subband spacing i{dm, on & and B (see Fig. 2
(bottom)). The latter also gives rise to an uneveness in the second order
susceptibility peaks. The peak value of the second order susceptibility is
x\? = 14.54/V for 1 tesla field (left panel); and x® = 43.14/V for 3 tesla
(right panel). For comparison, the nonlinear susceptibility of electric field
biased GaAs quantum wells (W=92 A) - calculated theoretically and mea-
sured experimentally in Ref. [9] - was x(®¥=240A/V for an electric field of 36
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Figure 3: Second order susceptibility as a function of the photon energy
for two values of the biasing magnetic field. The left panel corresponds to a
magnetic flux density B=1 tesla, the right panel to B=3 tesla. The maximum
values of the x(? curves are 14.54/V for 1 tesla field and 434,V for 3 tesla
field.

kV/cm. The carrier concentration used in their calculations was N= 5x10'7
em~3. Adjusted to that carrier concentration, the second order susceptibility
for a 3-tesla magnetic field is about 2154/V compared to 2404/V of Ref.
[9]. This shows that relatively weak magnetic fields in quantum wires can
produce similar magnitudes of x( as rather strong electric fields in quantum
wells.

Fig. 4 shows the dependence of the imaginary part of the first-order sus-
ceptibility Im(x(") as a function of photon energy for two different values of
the magnetic field. We have used the same wire dimensions and carrier con-
centrations for this plot as in the previous one. The same physics pertinent
to the previous plot explains different broadening; however, the peaks are

now attenuated because of averaging over different transition probabilities.
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Figure 4: Imaginary part of the first-order susceptibility as a function of the
photon energy for B=1 tesla (left panel) and B=3 tesla (right panel).

Since Im(x™) is related to the absorption coefficient c:(w) as
4
a(w) = —=Im(x), (8)

one can estimate the absorption over the whole frequency range. At res-
onant photon energies of 72 meV and 124 meV, the absorption coefficient
a=1510* cm™! and o = 4.5 10* cm™!, respectively. It is clear from the
figure, that the absorption coefficient at twice these frequencies, a(2w) is
much less. This implies that a large portion of the pump energy at these
resonant frequencies will be absorbed by the structure and converted into
second harmonic signal which will not be significantly re-absorbed.

Another important factor for efficient second harmonic generation is phase
matching. Since the refractive index n(w) of most materials is frequency de-
pendent, the following inequality holds n(w) # n(2w). As a result, the coher-
ence length lcop = Ay/4(n2w —ny) for GaAs (typical non-birefringent crystal)
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varies between 10um and 100pm. The efficiency of nonphase-matched inter-
actions are about 1075 times less than that of the phase-matched interactions

over a length scale of 1 cm.
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Figure 5: Real part of the first-order susceptibility as a function of the photon
energy for B=1 tesla (left panel) and B=3 tesla (right panel).

Using a magnetic field as an additional degree of freedom, we may try
to adjust n{w). In Fig. 5 we present the dependence of the real part of
the first-order susceptibility Re(xM) as a function of photon energy for two
different values of the magnetic field. Using the relation

An(w) = 2rRe(x\V), (9)

and Eq. (8), one can determine the frequencies where two conditions simul-
taneously hold: n(w) = n(2w) and a(w) >> a(2w). For the 3-tesla field, this

frequency Aw corresponds to 75 meV.
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IV. Conclusion

We have theoretically studied second harmonic generation in a semicon-
ductor quantum wire biased with a magnetic field. A strong second-harmonic
component of the dielectric susceptibility, due to the dipoles associated with
transitions between magneto-electric subbands, is found. We have also calcu-
lated absorption coefficient and refractive index in the appropriate frequency
range to assess the efficiency of frequency conversion and insertion loss. We
have shown that a magnetic field can be used as an additional degree of
freedom in optimizing second harmonic generation efficiency. This may have

important applications in nonlinear optics.
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